Métodos de penalidade e barreira para programação convexa semidefinida
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012010-203436/ |
Resumo: | Este trabalho insere-se no contexto de métodos de multiplicadores para a resolução de problemas de programação convexa semidefinida e a análise de suas propriedades através do método proximal aplicado sobre o problema dual. Nosso foco será uma subclasse de problemas de programação convexa semidefinida com restrições afins, para a qual estudaremos relações de dualidade e condições para a existência de soluções dos problemas primal e dual. Em seguida, analisaremos dois métodos de multiplicadores para resolver essa classe de problemas e que são extensões de métodos conhecidos para programação não-linear. O primeiro, proposto por Doljansky e Teboulle, aborda um método de ponto proximal interior entrópico e sua conexão com um método de multiplicadores exponenciais. O segundo, apresentado por Mosheyev e Zibulevsky, estende para a classe de problemas de nosso interesse um método de lagrangianos aumentados suaves proposto por Ben-Tal e Zibulevsky. Por fim, apresentamos os resultados de testes numéricos feitos com o algoritmo proposto por Mosheyev e Zibulevsky, analisando diferentes escolhas de parâmetros, o aproveitamento do padrão de esparsidade das matrizes do problema e critérios para a resolução aproximada dos subproblemas irrestritos que devem ser resolvidos a cada iteração desse algoritmo de lagrangianos aumentados. |
id |
USP_4d530094a6e49b03a0d6287a36ccc9b3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23012010-203436 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Métodos de penalidade e barreira para programação convexa semidefinidaPenalty / barrier methods for convex semidefinite programmingaugmented Lagrangian methodsconvex programming multiplier methodsmétodos de lagrangianos aumentadosmétodos de multiplicadoresmétodos de penalidade e barreirapenalty / barrier methodsprogramação convexaprogramação semidefinidasemidefinite programmingEste trabalho insere-se no contexto de métodos de multiplicadores para a resolução de problemas de programação convexa semidefinida e a análise de suas propriedades através do método proximal aplicado sobre o problema dual. Nosso foco será uma subclasse de problemas de programação convexa semidefinida com restrições afins, para a qual estudaremos relações de dualidade e condições para a existência de soluções dos problemas primal e dual. Em seguida, analisaremos dois métodos de multiplicadores para resolver essa classe de problemas e que são extensões de métodos conhecidos para programação não-linear. O primeiro, proposto por Doljansky e Teboulle, aborda um método de ponto proximal interior entrópico e sua conexão com um método de multiplicadores exponenciais. O segundo, apresentado por Mosheyev e Zibulevsky, estende para a classe de problemas de nosso interesse um método de lagrangianos aumentados suaves proposto por Ben-Tal e Zibulevsky. Por fim, apresentamos os resultados de testes numéricos feitos com o algoritmo proposto por Mosheyev e Zibulevsky, analisando diferentes escolhas de parâmetros, o aproveitamento do padrão de esparsidade das matrizes do problema e critérios para a resolução aproximada dos subproblemas irrestritos que devem ser resolvidos a cada iteração desse algoritmo de lagrangianos aumentados.This work deals with multiplier methods to solve semidefinite convex programming problems and the analysis of their proprieties based on the proximal point method applied on the dual problem. We focus on a subclass of semidefinite programming problems with affine constraints, for which we study duality relations an conditions for the existence of solutions of the primal and dual problems. Afterwards, we analyze two multiplier methods to solve this class of problems which are extensions of known methods in nonlinear programming. The first one, introduced by Doljansky e Teboulle, approaches an entropic interior proximal algorithm and their relationship with an exponential multiplier method. The second one, presented by Mosheyev e Zibulevsky, extends a smooth augmented Lagrangian method proposed by Ben-Tal and Zibulevsky for the problems of our interest. Finally, we present the results of numerical experiments for the algorithm proposed by Mosheyev e Zibulevsky, analyzing some choices of parameters, the sparsity patterns of matrices of the problem and criteria to accept approximate solutions of the unconstrained subproblems that must be solved at each iteration of the augmented Lagrangian method.Biblioteca Digitais de Teses e Dissertações da USPSilva, Paulo José da Silva eSantos, Antonio Carlos dos2009-05-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012010-203436/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-23012010-203436Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Métodos de penalidade e barreira para programação convexa semidefinida Penalty / barrier methods for convex semidefinite programming |
title |
Métodos de penalidade e barreira para programação convexa semidefinida |
spellingShingle |
Métodos de penalidade e barreira para programação convexa semidefinida Santos, Antonio Carlos dos augmented Lagrangian methods convex programming multiplier methods métodos de lagrangianos aumentados métodos de multiplicadores métodos de penalidade e barreira penalty / barrier methods programação convexa programação semidefinida semidefinite programming |
title_short |
Métodos de penalidade e barreira para programação convexa semidefinida |
title_full |
Métodos de penalidade e barreira para programação convexa semidefinida |
title_fullStr |
Métodos de penalidade e barreira para programação convexa semidefinida |
title_full_unstemmed |
Métodos de penalidade e barreira para programação convexa semidefinida |
title_sort |
Métodos de penalidade e barreira para programação convexa semidefinida |
author |
Santos, Antonio Carlos dos |
author_facet |
Santos, Antonio Carlos dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Paulo José da Silva e |
dc.contributor.author.fl_str_mv |
Santos, Antonio Carlos dos |
dc.subject.por.fl_str_mv |
augmented Lagrangian methods convex programming multiplier methods métodos de lagrangianos aumentados métodos de multiplicadores métodos de penalidade e barreira penalty / barrier methods programação convexa programação semidefinida semidefinite programming |
topic |
augmented Lagrangian methods convex programming multiplier methods métodos de lagrangianos aumentados métodos de multiplicadores métodos de penalidade e barreira penalty / barrier methods programação convexa programação semidefinida semidefinite programming |
description |
Este trabalho insere-se no contexto de métodos de multiplicadores para a resolução de problemas de programação convexa semidefinida e a análise de suas propriedades através do método proximal aplicado sobre o problema dual. Nosso foco será uma subclasse de problemas de programação convexa semidefinida com restrições afins, para a qual estudaremos relações de dualidade e condições para a existência de soluções dos problemas primal e dual. Em seguida, analisaremos dois métodos de multiplicadores para resolver essa classe de problemas e que são extensões de métodos conhecidos para programação não-linear. O primeiro, proposto por Doljansky e Teboulle, aborda um método de ponto proximal interior entrópico e sua conexão com um método de multiplicadores exponenciais. O segundo, apresentado por Mosheyev e Zibulevsky, estende para a classe de problemas de nosso interesse um método de lagrangianos aumentados suaves proposto por Ben-Tal e Zibulevsky. Por fim, apresentamos os resultados de testes numéricos feitos com o algoritmo proposto por Mosheyev e Zibulevsky, analisando diferentes escolhas de parâmetros, o aproveitamento do padrão de esparsidade das matrizes do problema e critérios para a resolução aproximada dos subproblemas irrestritos que devem ser resolvidos a cada iteração desse algoritmo de lagrangianos aumentados. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012010-203436/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23012010-203436/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257290472685568 |