Proximal and remote sensing to soil mineralogy assessment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-12042022-162844/ |
Resumo: | The mineralogy is the gear of soil processes, playing a fundamental role in relevant issues for humanity. However, access to mineralogical analyses is difficult due the difficulty of acquisition through traditional methods and alternative forms to reach it must be explored. This thesis was divided in two chapters that aimed: 1) To understand the fundamental interactions of the energy on pXRF information with emphasis on iron forms, moisture and SOM for use on soil science and 2) To map the abundances of major soil mineralogical components for the whole Brazilian territory at the surface and subsurface. In order to reach the first objective, three selective dissolution treatments were applied to remove: (i) soil organic matter (SOM), ii) SOM and poorly crystalline iron forms (o), iii) SOM and poorly crystalline plus well crystalline iron forms (d). One additional treatment iv) including water addition (+W) was also carried out. The pXRF was able to detect changes caused by the selective dissolution treatments and soil particle size distribution. The kaolinite, gibbsite,Fe2O3, Al2O3, SiO2, TiO2 and MnO contents were quantified with satisfactory accuracy (0.61< R2 < 0.97). Sources of uncertainty, mainly soil moisture, must be considered. The understanding of the fundamentals of energy interaction with the sample matrix in the X-ray range is the starting point for characterizing the soil through pXRF. In order to reach the second objective, The Brazilian Spectral Library (BSSL) with Vis-NIR-SWIR spectral data, was used to assess the relative amounts of hematite (Hem), goethite (Gt), kaolinite (Kt) and gibbsite (Gbs) in soil samples from Brazil. Terrain attributes (TA) and a synthetic soil image (SySI) with bare soil pixel from multitemporal Landsat images (1984 to 2020) were used as predictors. A novel approach was performed in order to obtain a bare soil image for the whole Brazilian territory. The model Random Forest (RF) was used for spatial prediction to obtain the mineral maps and their uncertainty by bootstrapping procedure. The Hem presented the more accurate results in RF models with R2 ranging from 0.48 to 0.56, followed by Gbs (0.42 to 0.44), Kt (0.20 to 0.31) and Gt (0.16 to 0.26). The proposed approach was able to reveal the spatial distribution of the relative abundance of minerals for the Brazilian territory. The mineral maps were in accordance with geology and soil legacy maps and also with the climate and terrain conditions. The approach proposed is an efficient method to obtain mineralogy information for large areas. |
id |
USP_50a45a8edbc51ac78d70dab3b8143c8b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12042022-162844 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Proximal and remote sensing to soil mineralogy assessmentSensoriamento remoto e próximo para caracterização da mineralogia do soloDigital soil mappingEspectroscopia de solosMapeamento digital de solosPedometriaPedometricpXRFpXRFSoil spectroscopyThe mineralogy is the gear of soil processes, playing a fundamental role in relevant issues for humanity. However, access to mineralogical analyses is difficult due the difficulty of acquisition through traditional methods and alternative forms to reach it must be explored. This thesis was divided in two chapters that aimed: 1) To understand the fundamental interactions of the energy on pXRF information with emphasis on iron forms, moisture and SOM for use on soil science and 2) To map the abundances of major soil mineralogical components for the whole Brazilian territory at the surface and subsurface. In order to reach the first objective, three selective dissolution treatments were applied to remove: (i) soil organic matter (SOM), ii) SOM and poorly crystalline iron forms (o), iii) SOM and poorly crystalline plus well crystalline iron forms (d). One additional treatment iv) including water addition (+W) was also carried out. The pXRF was able to detect changes caused by the selective dissolution treatments and soil particle size distribution. The kaolinite, gibbsite,Fe2O3, Al2O3, SiO2, TiO2 and MnO contents were quantified with satisfactory accuracy (0.61< R2 < 0.97). Sources of uncertainty, mainly soil moisture, must be considered. The understanding of the fundamentals of energy interaction with the sample matrix in the X-ray range is the starting point for characterizing the soil through pXRF. In order to reach the second objective, The Brazilian Spectral Library (BSSL) with Vis-NIR-SWIR spectral data, was used to assess the relative amounts of hematite (Hem), goethite (Gt), kaolinite (Kt) and gibbsite (Gbs) in soil samples from Brazil. Terrain attributes (TA) and a synthetic soil image (SySI) with bare soil pixel from multitemporal Landsat images (1984 to 2020) were used as predictors. A novel approach was performed in order to obtain a bare soil image for the whole Brazilian territory. The model Random Forest (RF) was used for spatial prediction to obtain the mineral maps and their uncertainty by bootstrapping procedure. The Hem presented the more accurate results in RF models with R2 ranging from 0.48 to 0.56, followed by Gbs (0.42 to 0.44), Kt (0.20 to 0.31) and Gt (0.16 to 0.26). The proposed approach was able to reveal the spatial distribution of the relative abundance of minerals for the Brazilian territory. The mineral maps were in accordance with geology and soil legacy maps and also with the climate and terrain conditions. The approach proposed is an efficient method to obtain mineralogy information for large areas.A mineralogia é a engrenagem dos processos do solo, desempenhando um papel fundamental em questões relevantes para a humanidade. Porém, o acesso às análises mineralógicas é difícil devido à dificuldade de aquisição pelos métodos tradicionais e formas alternativas de alcançá-las devem ser exploradas. Esta tese foi dividida em dois capítulos que visaram: 1) Compreender os fundamentos das interações da energia na informação do pXRF com ênfase nas formas de ferro, umidade e matéria orgânica do solo para uso na ciência do solo e 2) Mapear as abundâncias dos minerais predominantes para todo o território Brasileiro, em superfície e subsuperfície. Para atingir o primeiro objetivo, três tratamentos de dissolução seletiva foram aplicados para remover: (i) matéria orgânica do solo (MOS), ii) MOS e formas de ferro pouco cristalinas (o), iii) MOS e as formas de ferro pouco cristalinas e também as formas bem cristalinas de ferro (d). Um tratamento adicional, iv) incluindo a adição de água (+ W) também foi realizado. O pXRF foi capaz de detectar alterações pelos tratamentos de dissolução seletiva e distribuição granulométrica do solo. Os teores de caulinita, gibbsita, Fe2O3, Al2O3, SiO2, TiO2 e MnO foram quantificados com acurácia satisfatória (0,61 < R2 <0,97). Fontes de incerteza, principalmente a umidade do solo, devem ser consideradas nas análises. A compreensão dos fundamentos da interação da energia com a matriz da amostra na faixa de raios X é o ponto de partida para a caracterização do solo por meio de pXRF. Para atingir o segundo objetivo, a Biblioteca de Espectral Solos do Brasil (BESB) com dados espectrais no Vis-NIR-SWIR foi utilizada para acessar a abundância de hematita (Hem), goethita (Gt), caulinita (Kt) e gibbsita (Gbs) em amostras de solo do Brasil. Os atributos do terreno (TA) e uma imagem sintética do solo (SySI) com pixel de solo exposto de imagens multitemporais do Landsat (1984 a 2020) foram usados como preditores. Uma nova abordagem foi realizada a fim de obter uma imagem de solo exposto para todo o território brasileiro. O modelo Random Forest foi utilizado na predição espacial para obtenção dos mapas minerais e sua incerteza por procedimento de bootstrapping. O Hem apresentou os modelos mais acurados com R2 variando de 0,48 a 0,56, seguido por Gbs (0,42 a 0,44), Kt (0,20 a 0,31) e Gt (0,16 a 0,26). A abordagem proposta foi capaz de revelar a distribuição espacial da abundância relativa de minerais para o território brasileiro. Os mapas minerais estavam de acordo com mapas legados de geologia e pedologia e também com as condições de clima e terreno. A abordagem proposta é um método eficiente para obter informações de mineralogia para grandes áreas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloRosin, Nícolas Augusto2022-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-12042022-162844/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-13T14:04:02Zoai:teses.usp.br:tde-12042022-162844Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-13T14:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Proximal and remote sensing to soil mineralogy assessment Sensoriamento remoto e próximo para caracterização da mineralogia do solo |
title |
Proximal and remote sensing to soil mineralogy assessment |
spellingShingle |
Proximal and remote sensing to soil mineralogy assessment Rosin, Nícolas Augusto Digital soil mapping Espectroscopia de solos Mapeamento digital de solos Pedometria Pedometric pXRF pXRF Soil spectroscopy |
title_short |
Proximal and remote sensing to soil mineralogy assessment |
title_full |
Proximal and remote sensing to soil mineralogy assessment |
title_fullStr |
Proximal and remote sensing to soil mineralogy assessment |
title_full_unstemmed |
Proximal and remote sensing to soil mineralogy assessment |
title_sort |
Proximal and remote sensing to soil mineralogy assessment |
author |
Rosin, Nícolas Augusto |
author_facet |
Rosin, Nícolas Augusto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
dc.contributor.author.fl_str_mv |
Rosin, Nícolas Augusto |
dc.subject.por.fl_str_mv |
Digital soil mapping Espectroscopia de solos Mapeamento digital de solos Pedometria Pedometric pXRF pXRF Soil spectroscopy |
topic |
Digital soil mapping Espectroscopia de solos Mapeamento digital de solos Pedometria Pedometric pXRF pXRF Soil spectroscopy |
description |
The mineralogy is the gear of soil processes, playing a fundamental role in relevant issues for humanity. However, access to mineralogical analyses is difficult due the difficulty of acquisition through traditional methods and alternative forms to reach it must be explored. This thesis was divided in two chapters that aimed: 1) To understand the fundamental interactions of the energy on pXRF information with emphasis on iron forms, moisture and SOM for use on soil science and 2) To map the abundances of major soil mineralogical components for the whole Brazilian territory at the surface and subsurface. In order to reach the first objective, three selective dissolution treatments were applied to remove: (i) soil organic matter (SOM), ii) SOM and poorly crystalline iron forms (o), iii) SOM and poorly crystalline plus well crystalline iron forms (d). One additional treatment iv) including water addition (+W) was also carried out. The pXRF was able to detect changes caused by the selective dissolution treatments and soil particle size distribution. The kaolinite, gibbsite,Fe2O3, Al2O3, SiO2, TiO2 and MnO contents were quantified with satisfactory accuracy (0.61< R2 < 0.97). Sources of uncertainty, mainly soil moisture, must be considered. The understanding of the fundamentals of energy interaction with the sample matrix in the X-ray range is the starting point for characterizing the soil through pXRF. In order to reach the second objective, The Brazilian Spectral Library (BSSL) with Vis-NIR-SWIR spectral data, was used to assess the relative amounts of hematite (Hem), goethite (Gt), kaolinite (Kt) and gibbsite (Gbs) in soil samples from Brazil. Terrain attributes (TA) and a synthetic soil image (SySI) with bare soil pixel from multitemporal Landsat images (1984 to 2020) were used as predictors. A novel approach was performed in order to obtain a bare soil image for the whole Brazilian territory. The model Random Forest (RF) was used for spatial prediction to obtain the mineral maps and their uncertainty by bootstrapping procedure. The Hem presented the more accurate results in RF models with R2 ranging from 0.48 to 0.56, followed by Gbs (0.42 to 0.44), Kt (0.20 to 0.31) and Gt (0.16 to 0.26). The proposed approach was able to reveal the spatial distribution of the relative abundance of minerals for the Brazilian territory. The mineral maps were in accordance with geology and soil legacy maps and also with the climate and terrain conditions. The approach proposed is an efficient method to obtain mineralogy information for large areas. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-12042022-162844/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-12042022-162844/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256891900559360 |