Remote sensing application in forest monitoring and climate changes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11150/tde-03102023-153512/ |
Resumo: | Remote sensing technologies have made significant advancements in recent decades, with the introduction of new sensors and data manipulation techniques that allow us to observe forests in previously inaccessible ways. With these advancements, there are high expectations for these technologies to address the challenges posed by climate change. This master\'s thesis consists of two chapters, one using a passive sensor and the other using an active sensor. The first chapter investigates the potential of high-resolution multispectral satellite imagery and different data manipulation techniques for monitoring forest landscapes and classifying different forest types, with the aim of supporting landscape forest restoration programs. The second chapter focuses on the use of LiDAR data for monitoring degradation in REDD+ projects at a local level, aiming to explore the applications of this technology in forest monitoring and conservation. Our results have shown the great potential of remote sensing technologies in addressing various issues related to climate change mitigation, both for forest restoration and conservation. However, further work needs to be done to develop robust and replicable methodologies that allow remote sensing technologies to play a key role in overcoming the significant challenges posed by climate change. |
id |
USP_527974027deb7f3cce8a4651c4d5c08f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03102023-153512 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Remote sensing application in forest monitoring and climate changesAplicações do sensoriamento remoto no monitoramento florestal e mitigação das mudanças climáticasDegradação florestalForest degradationForest typesImagem orbital multiespectralLiDARLiDARMultispectral orbital imagesTipologias florestaisRemote sensing technologies have made significant advancements in recent decades, with the introduction of new sensors and data manipulation techniques that allow us to observe forests in previously inaccessible ways. With these advancements, there are high expectations for these technologies to address the challenges posed by climate change. This master\'s thesis consists of two chapters, one using a passive sensor and the other using an active sensor. The first chapter investigates the potential of high-resolution multispectral satellite imagery and different data manipulation techniques for monitoring forest landscapes and classifying different forest types, with the aim of supporting landscape forest restoration programs. The second chapter focuses on the use of LiDAR data for monitoring degradation in REDD+ projects at a local level, aiming to explore the applications of this technology in forest monitoring and conservation. Our results have shown the great potential of remote sensing technologies in addressing various issues related to climate change mitigation, both for forest restoration and conservation. However, further work needs to be done to develop robust and replicable methodologies that allow remote sensing technologies to play a key role in overcoming the significant challenges posed by climate change.Nos últimos anos, as tecnologias de sensoriamento remoto têm experimentado avanços significativos, impulsionados pela introdução de novos sensores e técnicas avançadas de processamento de dados. Esses avanços têm permitido uma observação das florestas de maneiras antes inacessíveis. Com isso, surgem grandes expectativas em relação a essas tecnologias no enfrentamento dos desafios impostos pelas mudanças climáticas. Esta dissertação consiste em dois capítulos, sendo o primeiro focado no uso de imagens orbitais multiespectrais de alta resolução e técnicas avançadas de manipulação de dados para o monitoramento e classificação de diferentes tipos de cobertura florestal. O objetivo é fornecer suporte a programas de restauração florestal em paisagens. O segundo capítulo aborda a utilização de dados LiDAR para o monitoramento local da degradação em projetos REDD+, visando investigar as aplicações dessa tecnologia na conservação e monitoramento florestal. Nossos resultados evidenciaram o grande potencial das tecnologias de sensoriamento remoto para abordar questões relacionadas à mitigação das mudanças climáticas, tanto em termos de restauração quanto de conservação florestal. No entanto, é necessário realizar trabalhos subsequentes para desenvolver metodologias robustas e replicáveis, a fim de permitir que as tecnologias de sensoriamento remoto desempenhem um papel fundamental na superação dos desafios impostos pelas mudanças climáticas.Biblioteca Digitais de Teses e Dissertações da USPBrancalion, Pedro Henrique SantinHaneda, Léo Eiti2023-08-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11150/tde-03102023-153512/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-10-04T13:20:03Zoai:teses.usp.br:tde-03102023-153512Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-10-04T13:20:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Remote sensing application in forest monitoring and climate changes Aplicações do sensoriamento remoto no monitoramento florestal e mitigação das mudanças climáticas |
title |
Remote sensing application in forest monitoring and climate changes |
spellingShingle |
Remote sensing application in forest monitoring and climate changes Haneda, Léo Eiti Degradação florestal Forest degradation Forest types Imagem orbital multiespectral LiDAR LiDAR Multispectral orbital images Tipologias florestais |
title_short |
Remote sensing application in forest monitoring and climate changes |
title_full |
Remote sensing application in forest monitoring and climate changes |
title_fullStr |
Remote sensing application in forest monitoring and climate changes |
title_full_unstemmed |
Remote sensing application in forest monitoring and climate changes |
title_sort |
Remote sensing application in forest monitoring and climate changes |
author |
Haneda, Léo Eiti |
author_facet |
Haneda, Léo Eiti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brancalion, Pedro Henrique Santin |
dc.contributor.author.fl_str_mv |
Haneda, Léo Eiti |
dc.subject.por.fl_str_mv |
Degradação florestal Forest degradation Forest types Imagem orbital multiespectral LiDAR LiDAR Multispectral orbital images Tipologias florestais |
topic |
Degradação florestal Forest degradation Forest types Imagem orbital multiespectral LiDAR LiDAR Multispectral orbital images Tipologias florestais |
description |
Remote sensing technologies have made significant advancements in recent decades, with the introduction of new sensors and data manipulation techniques that allow us to observe forests in previously inaccessible ways. With these advancements, there are high expectations for these technologies to address the challenges posed by climate change. This master\'s thesis consists of two chapters, one using a passive sensor and the other using an active sensor. The first chapter investigates the potential of high-resolution multispectral satellite imagery and different data manipulation techniques for monitoring forest landscapes and classifying different forest types, with the aim of supporting landscape forest restoration programs. The second chapter focuses on the use of LiDAR data for monitoring degradation in REDD+ projects at a local level, aiming to explore the applications of this technology in forest monitoring and conservation. Our results have shown the great potential of remote sensing technologies in addressing various issues related to climate change mitigation, both for forest restoration and conservation. However, further work needs to be done to develop robust and replicable methodologies that allow remote sensing technologies to play a key role in overcoming the significant challenges posed by climate change. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11150/tde-03102023-153512/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11150/tde-03102023-153512/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256702168072192 |