Galaxy Power Spectrum Analysis: A Monte-Carlo Approach

Detalhes bibliográficos
Autor(a) principal: Loureiro, Arthur Eduardo da Mota
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06072015-060434/
Resumo: Many galaxy surveys are planned to release their data over the next few years. Each different survey has its own geometrical limitations, which reflects upon the data as a selection function the spatial distribution of certain types of galaxies. Given a galaxy map (real or mock), the main goal of this work is to obtain information about how the selection function affects some of the cosmological parameters which can be probed from large-scale structure. A Monte-Carlo Markov Chain method is proposed in order to probe the effects of considering the selection functions parameters as nuisance parameters. The method consists in combining realizations of simulated galaxy catalogs using theoretical matter power spectra, combined with an optimal power spectrum estimator method. Theory and data are then compared in a multivariate Gaussian representing the likelihood function. This Monte-Carlo method has proven robust and capable of probing selection function effects on the cosmological parameters, showing that the simple marginalization over the nuisance parameters might lead to wrong estimates on the cosmology. The method is applied to obtain forecasts for these effects on the upcoming J-PAS Luminous Red Galaxies data and is employed to obtain constraints on the Hubble parameter (H0), the dark matter density (c) and two parameters of the equation of state of dark energy (w0 and wa).
id USP_52801f6ab5d856c1abe20a81a7f65611
oai_identifier_str oai:teses.usp.br:tde-06072015-060434
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Galaxy Power Spectrum Analysis: A Monte-Carlo ApproachAnálise do Espectro de Potências de Galáxias: Uma Abordagem via métodos de Monte-CarloCosmologiaCosmologiaEstrutura em Larga EscalaEstrutura em Larga EscalaMétodo de Monte CarloMétodo de Monte-CarloMany galaxy surveys are planned to release their data over the next few years. Each different survey has its own geometrical limitations, which reflects upon the data as a selection function the spatial distribution of certain types of galaxies. Given a galaxy map (real or mock), the main goal of this work is to obtain information about how the selection function affects some of the cosmological parameters which can be probed from large-scale structure. A Monte-Carlo Markov Chain method is proposed in order to probe the effects of considering the selection functions parameters as nuisance parameters. The method consists in combining realizations of simulated galaxy catalogs using theoretical matter power spectra, combined with an optimal power spectrum estimator method. Theory and data are then compared in a multivariate Gaussian representing the likelihood function. This Monte-Carlo method has proven robust and capable of probing selection function effects on the cosmological parameters, showing that the simple marginalization over the nuisance parameters might lead to wrong estimates on the cosmology. The method is applied to obtain forecasts for these effects on the upcoming J-PAS Luminous Red Galaxies data and is employed to obtain constraints on the Hubble parameter (H0), the dark matter density (c) and two parameters of the equation of state of dark energy (w0 and wa).Nos próximos anos, diversos levantamentos de galáxias planejam lançar uma quantidade considerável de novos dados, marcando, assim, o início da chamda era da cosmologia de precisão. Cada levantamento possui suas próprias limitações geométricas, que manifestam- se perante os dados na forma de uma função de seleção, ou seja, uma distribuição espacial de cada tipo de galáxia. A partir de um mapa de galáxias (real ou simulado), o principal objetivo desse trabalho foi descobrir como a função de seleção afeta alguns dos parâmetros cosmológicos que podem ser obtidos através de dados futuros de estrutura em larga escala. Portanto, propôs-se um método de Monte-Carlo com cadeias de Markov para estudar os efeitos decorrentes da inclusão dos parâmetros da função de seleção como nuisance parameters. Esse método consiste em combinar simulações de catálogos de galáxias, usando um espectro de potências teórico da matéria junto com um estimador ótimo, a fim de obter ambos espectros (teórico e observacional) e compará-los em uma verossimilhança Gaussiana-multivariada. O método de Monte-Carlo provou-se robusto e capaz de demonstrar os efeitos da função de seleção sobre as estimativas dos parâmetros cosmológicos, comprovando que o simples ato de marginalizar sobre os parâmetros não desejados pode levar a estimativas equivocadas na cosmologia em quesão. Finalmente, esse método foi aplicado nas estimações do parâmetro de Hubble (H0), na densidade de matéria escura (c) e em dois dos parâmetros da equação de estado da energia escura (w0 e wa) com o objetivo de prever tais efeitos para dados futuros do levantamento J-PAS com Galáxias Vermelhas Luminosas.Biblioteca Digitais de Teses e Dissertações da USPAbramo, Luis Raul WeberLoureiro, Arthur Eduardo da Mota2015-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-06072015-060434/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2016-07-28T16:11:57Zoai:teses.usp.br:tde-06072015-060434Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
Análise do Espectro de Potências de Galáxias: Uma Abordagem via métodos de Monte-Carlo
title Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
spellingShingle Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
Loureiro, Arthur Eduardo da Mota
Cosmologia
Cosmologia
Estrutura em Larga Escala
Estrutura em Larga Escala
Método de Monte Carlo
Método de Monte-Carlo
title_short Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
title_full Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
title_fullStr Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
title_full_unstemmed Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
title_sort Galaxy Power Spectrum Analysis: A Monte-Carlo Approach
author Loureiro, Arthur Eduardo da Mota
author_facet Loureiro, Arthur Eduardo da Mota
author_role author
dc.contributor.none.fl_str_mv Abramo, Luis Raul Weber
dc.contributor.author.fl_str_mv Loureiro, Arthur Eduardo da Mota
dc.subject.por.fl_str_mv Cosmologia
Cosmologia
Estrutura em Larga Escala
Estrutura em Larga Escala
Método de Monte Carlo
Método de Monte-Carlo
topic Cosmologia
Cosmologia
Estrutura em Larga Escala
Estrutura em Larga Escala
Método de Monte Carlo
Método de Monte-Carlo
description Many galaxy surveys are planned to release their data over the next few years. Each different survey has its own geometrical limitations, which reflects upon the data as a selection function the spatial distribution of certain types of galaxies. Given a galaxy map (real or mock), the main goal of this work is to obtain information about how the selection function affects some of the cosmological parameters which can be probed from large-scale structure. A Monte-Carlo Markov Chain method is proposed in order to probe the effects of considering the selection functions parameters as nuisance parameters. The method consists in combining realizations of simulated galaxy catalogs using theoretical matter power spectra, combined with an optimal power spectrum estimator method. Theory and data are then compared in a multivariate Gaussian representing the likelihood function. This Monte-Carlo method has proven robust and capable of probing selection function effects on the cosmological parameters, showing that the simple marginalization over the nuisance parameters might lead to wrong estimates on the cosmology. The method is applied to obtain forecasts for these effects on the upcoming J-PAS Luminous Red Galaxies data and is employed to obtain constraints on the Hubble parameter (H0), the dark matter density (c) and two parameters of the equation of state of dark energy (w0 and wa).
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06072015-060434/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06072015-060434/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256720448946176