Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/43/43131/tde-28112013-102436/ |
Resumo: | In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n . |
id |
USP_52d57c8ee7a9471644a5de05a5e7fec7 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28112013-102436 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das SoluçõesNonlinear differential equations with three delays: detailed study of the solutions.Equações diferenciais não linearesFísica teóricaNonlinear differential equationsTheoretical physicsIn this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n .In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n .Biblioteca Digitais de Teses e Dissertações da USPMalta, Coraci PereiraFigueiredo, Júlio César Bastos de2000-05-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43131/tde-28112013-102436/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:02Zoai:teses.usp.br:tde-28112013-102436Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções Nonlinear differential equations with three delays: detailed study of the solutions. |
title |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
spellingShingle |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções Figueiredo, Júlio César Bastos de Equações diferenciais não lineares Física teórica Nonlinear differential equations Theoretical physics |
title_short |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
title_full |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
title_fullStr |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
title_full_unstemmed |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
title_sort |
Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções |
author |
Figueiredo, Júlio César Bastos de |
author_facet |
Figueiredo, Júlio César Bastos de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Malta, Coraci Pereira |
dc.contributor.author.fl_str_mv |
Figueiredo, Júlio César Bastos de |
dc.subject.por.fl_str_mv |
Equações diferenciais não lineares Física teórica Nonlinear differential equations Theoretical physics |
topic |
Equações diferenciais não lineares Física teórica Nonlinear differential equations Theoretical physics |
description |
In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n . |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-05-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43131/tde-28112013-102436/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43131/tde-28112013-102436/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257445986992128 |