Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes

Detalhes bibliográficos
Autor(a) principal: Marcomini, Karem Daiane
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-08122017-113952/
Resumo: Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente.
id USP_5308460e2ac08397f17d9f88d2f5e962
oai_identifier_str oai:teses.usp.br:tde-08122017-113952
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentesCharacterization of lesions in ultrasound and elastography images using machine learning methodsB-mode ultrasoundBreast cancerCâncer de mamaClassificaçãoClassificationConcordância interobservadorDescritores de característicasElastografiaElastographyFeature descriptorsImage processingInterobserver agreementProcessamento de imagensSegmentaçãoSegmentationUltrassom modo-BMuitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente.Many procedures have been developed to aid in the early detection and diagnosis of breast cancer. In this context, Computer-Aided Diagnosis (CADx) systems were designed to provide to the specialist a reliable second opinion. This study presents the proposal of investigating the diagnostic ability of a computational system in the characterization of suspicious findings in B-mode ultrasound and breast elastography imaging. The database consisted of 31 malignant and 52 benign lesions and an additional data set containing 206 lesions (144 benign and 62 malignant) seen only on the B-mode ultrasound for performing the machine learning tests. Three radiologists drew manually the contour of the lesions in B-mode ultrasound and we used an automatic technique to segment the lesions. Then, the contour was mapped in the elastography image. The lesions were classified using the CADx system developed for B-mode ultrasound and strain elastography. We calculated the sensitivity, specificity and AUC to evaluate the data. The developed CADx system provided a diagnostic concordance in the classification of breast lesions from the different ways of contour determination (manual and automatic), allowing to reduce the diagnostic variability. In addition, the CADx system showed superior results to the visual analysis of the radiologist. When the radiologist associated both examinations (B-mode ultrasound and elastography), his visual analysis provided 87.10%, 55.77% and 0.714 of sensitivity, specificity and AUC, respectively. When we considered the result provided by the association between B-mode ultrasound and elastography images, the CADx system provided a comparative increase of about 7% of sensitivity and 17.2% of specificity, using the contour delimited by the most experienced radiologist. In addition, a positive influence was observed in the use of the computational tool by radiologists, since, on average, their sensitivity and specificity indexes also increased in relation to the conventional analysis, from 87.1% and 55.8% to 90.3% and 73.1%, respectively.Biblioteca Digitais de Teses e Dissertações da USPSchiabel, HomeroMarcomini, Karem Daiane2017-10-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-08122017-113952/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-08122017-113952Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
Characterization of lesions in ultrasound and elastography images using machine learning methods
title Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
spellingShingle Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
Marcomini, Karem Daiane
B-mode ultrasound
Breast cancer
Câncer de mama
Classificação
Classification
Concordância interobservador
Descritores de características
Elastografia
Elastography
Feature descriptors
Image processing
Interobserver agreement
Processamento de imagens
Segmentação
Segmentation
Ultrassom modo-B
title_short Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
title_full Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
title_fullStr Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
title_full_unstemmed Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
title_sort Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes
author Marcomini, Karem Daiane
author_facet Marcomini, Karem Daiane
author_role author
dc.contributor.none.fl_str_mv Schiabel, Homero
dc.contributor.author.fl_str_mv Marcomini, Karem Daiane
dc.subject.por.fl_str_mv B-mode ultrasound
Breast cancer
Câncer de mama
Classificação
Classification
Concordância interobservador
Descritores de características
Elastografia
Elastography
Feature descriptors
Image processing
Interobserver agreement
Processamento de imagens
Segmentação
Segmentation
Ultrassom modo-B
topic B-mode ultrasound
Breast cancer
Câncer de mama
Classificação
Classification
Concordância interobservador
Descritores de características
Elastografia
Elastography
Feature descriptors
Image processing
Interobserver agreement
Processamento de imagens
Segmentação
Segmentation
Ultrassom modo-B
description Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18152/tde-08122017-113952/
url http://www.teses.usp.br/teses/disponiveis/18/18152/tde-08122017-113952/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256497409490944