Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos

Detalhes bibliográficos
Autor(a) principal: Assunção, Fernando
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15082012-203206/
Resumo: Modelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na mitigação de riscos, expansão de carteiras, retenção de clientes, prevenção a fraudes, entre outros objetivos. Entretanto, durante o desenvolvimento destes modelos é comum existirem, dentre as variáveis preditivas, algumas que possuem dados não preenchidos (missings), sendo necessário assim adotar algum procedimento para tratamento destas variáveis. Dado este cenário, este estudo tem o objetivo de discutir metodologias de tratamento de dados faltantes em modelos preditivos, incentivando o uso de algumas delas já conhecidas pelo meio acadêmico, só que não utilizadas pelo mercado. Para isso, este trabalho descreve sete metodologias. Todas elas foram submetidas a uma aplicação empírica utilizando uma base de dados referente ao desenvolvimento de um modelo de Credit Score. Sobre esta base foram desenvolvidos sete modelos (um para cada metodologia descrita) e seus resultados foram avaliados e comparados através de índices de desempenho amplamente utilizados pelo mercado (KS, Gini, ROC e Curva de Aprovação). Nesta aplicação, as técnicas que apresentaram melhor desempenho foram a que tratam os dados faltantes como uma categoria à parte (técnica já utilizada pelo mercado) e a metodologia que consiste em agrupar os dados faltantes na categoria conceitualmente mais semelhante. Já a que apresentou o pior desempenho foi a metodologia que simplesmente não utiliza a variável com dados faltantes, outro procedimento comumente visto no mercado.
id USP_558a1846e8d9fa713167d3cb098ced71
oai_identifier_str oai:teses.usp.br:tde-15082012-203206
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivosStrategies for treatment of variables with missing data during the development of predictive modelscredit scorecredit scoredados faltantesimputação múltiplamissing valuesmodelos preditivosmultiple imputationpredictive modelsModelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na mitigação de riscos, expansão de carteiras, retenção de clientes, prevenção a fraudes, entre outros objetivos. Entretanto, durante o desenvolvimento destes modelos é comum existirem, dentre as variáveis preditivas, algumas que possuem dados não preenchidos (missings), sendo necessário assim adotar algum procedimento para tratamento destas variáveis. Dado este cenário, este estudo tem o objetivo de discutir metodologias de tratamento de dados faltantes em modelos preditivos, incentivando o uso de algumas delas já conhecidas pelo meio acadêmico, só que não utilizadas pelo mercado. Para isso, este trabalho descreve sete metodologias. Todas elas foram submetidas a uma aplicação empírica utilizando uma base de dados referente ao desenvolvimento de um modelo de Credit Score. Sobre esta base foram desenvolvidos sete modelos (um para cada metodologia descrita) e seus resultados foram avaliados e comparados através de índices de desempenho amplamente utilizados pelo mercado (KS, Gini, ROC e Curva de Aprovação). Nesta aplicação, as técnicas que apresentaram melhor desempenho foram a que tratam os dados faltantes como uma categoria à parte (técnica já utilizada pelo mercado) e a metodologia que consiste em agrupar os dados faltantes na categoria conceitualmente mais semelhante. Já a que apresentou o pior desempenho foi a metodologia que simplesmente não utiliza a variável com dados faltantes, outro procedimento comumente visto no mercado.Predictive models have been increasingly used by the market in order to assist companies in risk mitigation, portfolio growth, customer retention, fraud prevention, among others. During the model development, however, it is usual to have, among the predictive variables, some who have data not filled in (missing values), thus it is necessary to adopt a procedure to treat these variables. Given this scenario, the aim of this study is to discuss frameworks to deal with missing data in predictive models, encouraging the use of some already known by academia that are still not used by the market. This paper describes seven methods, which were submitted to an empirical application using a Credit Score data set. Each framework described resulted in a predictive model developed and the results were evaluated and compared through a series of widely used performance metrics (KS, Gini, ROC curve, Approval curve). In this application, the frameworks that presented better performance were the ones that treated missing data as a separate category (technique already used by the market) and the framework which consists of grouping the missing data in the category most similar conceptually. The worst performance framework otherwise was the one that simply ignored the variable containing missing values, another procedure commonly used by the market.Biblioteca Digitais de Teses e Dissertações da USPBarroso, Lucia PereiraAssunção, Fernando2012-05-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-15082012-203206/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T18:20:02Zoai:teses.usp.br:tde-15082012-203206Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T18:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
Strategies for treatment of variables with missing data during the development of predictive models
title Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
spellingShingle Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
Assunção, Fernando
credit score
credit score
dados faltantes
imputação múltipla
missing values
modelos preditivos
multiple imputation
predictive models
title_short Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
title_full Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
title_fullStr Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
title_full_unstemmed Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
title_sort Estratégias para tratamento de variáveis com dados faltantes durante o desenvolvimento de modelos preditivos
author Assunção, Fernando
author_facet Assunção, Fernando
author_role author
dc.contributor.none.fl_str_mv Barroso, Lucia Pereira
dc.contributor.author.fl_str_mv Assunção, Fernando
dc.subject.por.fl_str_mv credit score
credit score
dados faltantes
imputação múltipla
missing values
modelos preditivos
multiple imputation
predictive models
topic credit score
credit score
dados faltantes
imputação múltipla
missing values
modelos preditivos
multiple imputation
predictive models
description Modelos preditivos têm sido cada vez mais utilizados pelo mercado a fim de auxiliarem as empresas na mitigação de riscos, expansão de carteiras, retenção de clientes, prevenção a fraudes, entre outros objetivos. Entretanto, durante o desenvolvimento destes modelos é comum existirem, dentre as variáveis preditivas, algumas que possuem dados não preenchidos (missings), sendo necessário assim adotar algum procedimento para tratamento destas variáveis. Dado este cenário, este estudo tem o objetivo de discutir metodologias de tratamento de dados faltantes em modelos preditivos, incentivando o uso de algumas delas já conhecidas pelo meio acadêmico, só que não utilizadas pelo mercado. Para isso, este trabalho descreve sete metodologias. Todas elas foram submetidas a uma aplicação empírica utilizando uma base de dados referente ao desenvolvimento de um modelo de Credit Score. Sobre esta base foram desenvolvidos sete modelos (um para cada metodologia descrita) e seus resultados foram avaliados e comparados através de índices de desempenho amplamente utilizados pelo mercado (KS, Gini, ROC e Curva de Aprovação). Nesta aplicação, as técnicas que apresentaram melhor desempenho foram a que tratam os dados faltantes como uma categoria à parte (técnica já utilizada pelo mercado) e a metodologia que consiste em agrupar os dados faltantes na categoria conceitualmente mais semelhante. Já a que apresentou o pior desempenho foi a metodologia que simplesmente não utiliza a variável com dados faltantes, outro procedimento comumente visto no mercado.
publishDate 2012
dc.date.none.fl_str_mv 2012-05-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15082012-203206/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15082012-203206/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257026853339136