Sumarização Automática de Atualização para a língua portuguesa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30072018-090806/ |
Resumo: | O enorme volume de dados textuais disponível na web caracteriza-se como um cenário ideal para inúmeras aplicações do Processamento de Língua Natural, tal como a tarefa da Sumarização Automática de Atualização (SAA), que tem por objetivo a geração automática de resumos a partir de uma coleção textual admitindo-se que o leitor possui algum conhecimento prévio sobre os textos-fonte. Dessa forma, um bom resumo de atualização deve ser constituído pelas informações mais relevantes, novas e atualizadas com relação ao conhecimento prévio do leitor. Essa tarefa implica em diversos desafios, sobretudo nas etapas de seleção e síntese de conteúdo para o sumário. Embora existam inúmeras abordagens na literatura, com diferentes níveis de complexidade teórica e computacional, pouco dessas investigações fazem uso de algum conhecimento linguístico profundo, que pode auxiliar a identificação de conteúdo mais relevante e atualizado. Além disso, os métodos de sumarização comumente empregam uma abordagem de síntese extrativa, na qual algumas sentenças dos textos-fonte são selecionadas e organizadas para compor o sumário sem alteração de seu conteúdo. Tal abordagem pode limitar a informatividade do sumário, uma vez que alguns segmentos sentenciais podem conter informação redundante ou irrelevante ao leitor. Assim, esforços recentes foram direcionados à síntese compressiva, na qual alguns segmentos das sentenças selecionadas para o sumário são removidos previamente à inserção no sumário. Nesse cenário, este trabalho de doutorado teve por objetivo a investigação do uso de conhecimentos linguísticos, como a Teoria Discursiva Multidocumento (CST), Segmentação de Subtópicos e Reconhecimento de Entidades Nomeadas, em distintas abordagens de seleção de conteúdo por meio das sínteses extrativas e compressivas visando à produção de sumários de atualização mais informativos. Tendo a língua Portuguesa como principal objeto de estudo, foram organizados três novos córpus, o CSTNews-Update, que viabiliza experimentos de SAA, e o PCSC-Pares e G1-Pares, para o desenvolvimento/avaliação de métodos de Compressão Sentencial. Ressalta-se que os experimentos de sumarização foram também realizados para a língua inglesa. Após as experimentações, observou-se que a Segmentação de Subtópicos foi mais efetiva para a produção de sumários mais informativos, porém, em apenas poucas abordagens de seleção de conteúdo. Além disso, foram propostas algumas simplificações para o método DualSum por meio da distribuição de Subtópicos. Tais métodos apresentaram resultados muito satisfatórios com menor complexidade computacional. Visando a produção de sumários compressivos, desenvolveram-se inúmeros métodos de Compressão Sentencial por meio de algoritmos de Aprendizado de Máquina. O melhor método proposto apresentou resultados superiores a um trabalho do estado da arte, que faz uso de algoritmos de Deep Learning. Além dos resultados supracitados, ressalta-se que anteriormente a este trabalho, a maioria das investigações de Sumarização Automática para a língua Portuguesa foi direcionada à geração de sumários a partir de um (monodocumento) ou vários textos relacionados (multidocumento) por meio da síntese extrativa, sobretudo pela ausência se recursos que viabilizassem a expansão da área de Sumarização Automática para esse idioma. Assim, as contribuições deste trabalho engajam-se em três campos, nos métodos de SAA propostos com conhecimento linguísticos, nos métodos de Compressão Sentencial e nos recursos desenvolvidos para a língua Portuguesa. |
id |
USP_588d183eb4bc53c3bee0c0c94136c475 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-30072018-090806 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sumarização Automática de Atualização para a língua portuguesaUpdate Summarization for the portuguese languageCompressão sentencialCompressive summarizationSentence compressionSumarização automática de atualizaçãoSumarização compressivaUpdate summarizationO enorme volume de dados textuais disponível na web caracteriza-se como um cenário ideal para inúmeras aplicações do Processamento de Língua Natural, tal como a tarefa da Sumarização Automática de Atualização (SAA), que tem por objetivo a geração automática de resumos a partir de uma coleção textual admitindo-se que o leitor possui algum conhecimento prévio sobre os textos-fonte. Dessa forma, um bom resumo de atualização deve ser constituído pelas informações mais relevantes, novas e atualizadas com relação ao conhecimento prévio do leitor. Essa tarefa implica em diversos desafios, sobretudo nas etapas de seleção e síntese de conteúdo para o sumário. Embora existam inúmeras abordagens na literatura, com diferentes níveis de complexidade teórica e computacional, pouco dessas investigações fazem uso de algum conhecimento linguístico profundo, que pode auxiliar a identificação de conteúdo mais relevante e atualizado. Além disso, os métodos de sumarização comumente empregam uma abordagem de síntese extrativa, na qual algumas sentenças dos textos-fonte são selecionadas e organizadas para compor o sumário sem alteração de seu conteúdo. Tal abordagem pode limitar a informatividade do sumário, uma vez que alguns segmentos sentenciais podem conter informação redundante ou irrelevante ao leitor. Assim, esforços recentes foram direcionados à síntese compressiva, na qual alguns segmentos das sentenças selecionadas para o sumário são removidos previamente à inserção no sumário. Nesse cenário, este trabalho de doutorado teve por objetivo a investigação do uso de conhecimentos linguísticos, como a Teoria Discursiva Multidocumento (CST), Segmentação de Subtópicos e Reconhecimento de Entidades Nomeadas, em distintas abordagens de seleção de conteúdo por meio das sínteses extrativas e compressivas visando à produção de sumários de atualização mais informativos. Tendo a língua Portuguesa como principal objeto de estudo, foram organizados três novos córpus, o CSTNews-Update, que viabiliza experimentos de SAA, e o PCSC-Pares e G1-Pares, para o desenvolvimento/avaliação de métodos de Compressão Sentencial. Ressalta-se que os experimentos de sumarização foram também realizados para a língua inglesa. Após as experimentações, observou-se que a Segmentação de Subtópicos foi mais efetiva para a produção de sumários mais informativos, porém, em apenas poucas abordagens de seleção de conteúdo. Além disso, foram propostas algumas simplificações para o método DualSum por meio da distribuição de Subtópicos. Tais métodos apresentaram resultados muito satisfatórios com menor complexidade computacional. Visando a produção de sumários compressivos, desenvolveram-se inúmeros métodos de Compressão Sentencial por meio de algoritmos de Aprendizado de Máquina. O melhor método proposto apresentou resultados superiores a um trabalho do estado da arte, que faz uso de algoritmos de Deep Learning. Além dos resultados supracitados, ressalta-se que anteriormente a este trabalho, a maioria das investigações de Sumarização Automática para a língua Portuguesa foi direcionada à geração de sumários a partir de um (monodocumento) ou vários textos relacionados (multidocumento) por meio da síntese extrativa, sobretudo pela ausência se recursos que viabilizassem a expansão da área de Sumarização Automática para esse idioma. Assim, as contribuições deste trabalho engajam-se em três campos, nos métodos de SAA propostos com conhecimento linguísticos, nos métodos de Compressão Sentencial e nos recursos desenvolvidos para a língua Portuguesa.The huge amount of data that is available online is the main motivation for many tasks of Natural Language Processing, as the Update Summarization (US) which aims to produce a summary from a collection of related texts under the assumption the user/reader has some previous knowledge about the texts subject. Thus, a good update summary must be produced with the most relevant, new and updated content in order to assist the user. This task presents many research challenges, mainly in the processes of content selection and synthesis of the summary. Although there are several approaches for US, most of them do not use of some linguistic information that may assist the identification relevant content for the summary/user. Furthermore, US methods frequently apply an extractive synthesis approach, in which the summary is produced by picking some sentences from the source texts without rewriting operations. Once some segments of the picked sentences may contain redundant or irrelevant content, this synthesis process can to reduce the summary informativeness. Thus, some recent efforts in this field have focused in the compressive synthesis approach, in which some sentences are compressed by deletion of tokens or rewriting operations before be inserted in the output summary. Given this background, this PhD research has investigated the use of some linguistic information, as the Cross Document Theory (CST), Subtopic Segmentation and Named Entity Recognition into distinct content selection approaches for US by use extractive and compressive synthesis process in order to produce more informative update summaries. Once we have focused on the Portuguese language, we have compiled three new resources for this language, the CSTNews-Update, which allows the investigation of US methods for this language, the PCST-Pairs and G1-Pairs, in which there are pairs of original and compressed sentences in order to produce methods of sentence compression. It is important to say we also have performed experiments for the English language, in which there are more resources. The results show the Subtopic Segmentation assists the production of better summaries, however, this have occurred just on some content selection approaches. Furthermore, we also have proposed a simplification for the method DualSum by use Subtopic Segments. These simplifications require low computation power than DualSum and they have presented very satisfactory results. Aiming the production of compressive summaries, we have proposed different compression methods by use machine learning techniques. Our better proposed method present quality similar to a state-of-art system, which is based on Deep Learning algorithms. Previously this investigation, most of the researches on the Automatic Summarization field for the Portuguese language was focused on previous traditional tasks, as the production of summaries from one and many texts that does not consider the user knowledge, by use extractive synthesis processes. Thus, beside our proposed US systems based on linguistic information, which were evaluated over English and Portuguese datasets, we have produced many Compressions Methods and three new resources that will assist the expansion of the Automatic Summarization field for the Portuguese Language.Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroNóbrega, Fernando Antônio Asevêdo2017-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-30072018-090806/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-10-03T01:45:28Zoai:teses.usp.br:tde-30072018-090806Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sumarização Automática de Atualização para a língua portuguesa Update Summarization for the portuguese language |
title |
Sumarização Automática de Atualização para a língua portuguesa |
spellingShingle |
Sumarização Automática de Atualização para a língua portuguesa Nóbrega, Fernando Antônio Asevêdo Compressão sentencial Compressive summarization Sentence compression Sumarização automática de atualização Sumarização compressiva Update summarization |
title_short |
Sumarização Automática de Atualização para a língua portuguesa |
title_full |
Sumarização Automática de Atualização para a língua portuguesa |
title_fullStr |
Sumarização Automática de Atualização para a língua portuguesa |
title_full_unstemmed |
Sumarização Automática de Atualização para a língua portuguesa |
title_sort |
Sumarização Automática de Atualização para a língua portuguesa |
author |
Nóbrega, Fernando Antônio Asevêdo |
author_facet |
Nóbrega, Fernando Antônio Asevêdo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pardo, Thiago Alexandre Salgueiro |
dc.contributor.author.fl_str_mv |
Nóbrega, Fernando Antônio Asevêdo |
dc.subject.por.fl_str_mv |
Compressão sentencial Compressive summarization Sentence compression Sumarização automática de atualização Sumarização compressiva Update summarization |
topic |
Compressão sentencial Compressive summarization Sentence compression Sumarização automática de atualização Sumarização compressiva Update summarization |
description |
O enorme volume de dados textuais disponível na web caracteriza-se como um cenário ideal para inúmeras aplicações do Processamento de Língua Natural, tal como a tarefa da Sumarização Automática de Atualização (SAA), que tem por objetivo a geração automática de resumos a partir de uma coleção textual admitindo-se que o leitor possui algum conhecimento prévio sobre os textos-fonte. Dessa forma, um bom resumo de atualização deve ser constituído pelas informações mais relevantes, novas e atualizadas com relação ao conhecimento prévio do leitor. Essa tarefa implica em diversos desafios, sobretudo nas etapas de seleção e síntese de conteúdo para o sumário. Embora existam inúmeras abordagens na literatura, com diferentes níveis de complexidade teórica e computacional, pouco dessas investigações fazem uso de algum conhecimento linguístico profundo, que pode auxiliar a identificação de conteúdo mais relevante e atualizado. Além disso, os métodos de sumarização comumente empregam uma abordagem de síntese extrativa, na qual algumas sentenças dos textos-fonte são selecionadas e organizadas para compor o sumário sem alteração de seu conteúdo. Tal abordagem pode limitar a informatividade do sumário, uma vez que alguns segmentos sentenciais podem conter informação redundante ou irrelevante ao leitor. Assim, esforços recentes foram direcionados à síntese compressiva, na qual alguns segmentos das sentenças selecionadas para o sumário são removidos previamente à inserção no sumário. Nesse cenário, este trabalho de doutorado teve por objetivo a investigação do uso de conhecimentos linguísticos, como a Teoria Discursiva Multidocumento (CST), Segmentação de Subtópicos e Reconhecimento de Entidades Nomeadas, em distintas abordagens de seleção de conteúdo por meio das sínteses extrativas e compressivas visando à produção de sumários de atualização mais informativos. Tendo a língua Portuguesa como principal objeto de estudo, foram organizados três novos córpus, o CSTNews-Update, que viabiliza experimentos de SAA, e o PCSC-Pares e G1-Pares, para o desenvolvimento/avaliação de métodos de Compressão Sentencial. Ressalta-se que os experimentos de sumarização foram também realizados para a língua inglesa. Após as experimentações, observou-se que a Segmentação de Subtópicos foi mais efetiva para a produção de sumários mais informativos, porém, em apenas poucas abordagens de seleção de conteúdo. Além disso, foram propostas algumas simplificações para o método DualSum por meio da distribuição de Subtópicos. Tais métodos apresentaram resultados muito satisfatórios com menor complexidade computacional. Visando a produção de sumários compressivos, desenvolveram-se inúmeros métodos de Compressão Sentencial por meio de algoritmos de Aprendizado de Máquina. O melhor método proposto apresentou resultados superiores a um trabalho do estado da arte, que faz uso de algoritmos de Deep Learning. Além dos resultados supracitados, ressalta-se que anteriormente a este trabalho, a maioria das investigações de Sumarização Automática para a língua Portuguesa foi direcionada à geração de sumários a partir de um (monodocumento) ou vários textos relacionados (multidocumento) por meio da síntese extrativa, sobretudo pela ausência se recursos que viabilizassem a expansão da área de Sumarização Automática para esse idioma. Assim, as contribuições deste trabalho engajam-se em três campos, nos métodos de SAA propostos com conhecimento linguísticos, nos métodos de Compressão Sentencial e nos recursos desenvolvidos para a língua Portuguesa. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30072018-090806/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30072018-090806/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257505126678528 |