Centers and isochronicity of some polynomial differential systems

Detalhes bibliográficos
Autor(a) principal: Fernandes, Wilker Thiago Resende
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-080613/
Resumo: The center-focus and isochronicity problems are two classic problem in the qualitative theory of ordinary differential equations (ODEs). Although such problems have been studied during more than hundred years a complete understanding of them is far from be reached. Recently the computational algebra tools have been contributing significantly with the development of such problems. The aim of this thesis is to contribute with the studies of the center-focus and isochronicity problem. Using computational algebra tools we find conditions for the existence of two simultaneous centers for a family of quintic systems possessing symmetry. The studies of the simultaneous existence of two centers in differential systems is known as the bi-center problem. We investigate conditions for the isochronicity of centers for families of cubic and quintic systems and we study its global behaviour in the Poincaré disk. Finally, we study the existence of invariant surfaces and first integrals in a family of 3-dimensional systems. Such family is known as the May-Leonard asymmetric system and it appears in modelling, for instance it is a model for the competition of three species.
id USP_59f9b7c0408564cd31de32496c014405
oai_identifier_str oai:teses.usp.br:tde-12092017-080613
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Centers and isochronicity of some polynomial differential systemsCentros e isocronicidade de alguns sistemas diferenciais polinomiaisCentros isócronosCurvas e superfícies invariantesDarboux integrabilityDecomposição primária de ideaisDifferential systems with symmetryIntegrabilidade DarbouxianaInvariant surfaces and curvesIsochronous centersPrimary decompositions of idealsSistemas diferenciais com simetriaThe center-focus and isochronicity problems are two classic problem in the qualitative theory of ordinary differential equations (ODEs). Although such problems have been studied during more than hundred years a complete understanding of them is far from be reached. Recently the computational algebra tools have been contributing significantly with the development of such problems. The aim of this thesis is to contribute with the studies of the center-focus and isochronicity problem. Using computational algebra tools we find conditions for the existence of two simultaneous centers for a family of quintic systems possessing symmetry. The studies of the simultaneous existence of two centers in differential systems is known as the bi-center problem. We investigate conditions for the isochronicity of centers for families of cubic and quintic systems and we study its global behaviour in the Poincaré disk. Finally, we study the existence of invariant surfaces and first integrals in a family of 3-dimensional systems. Such family is known as the May-Leonard asymmetric system and it appears in modelling, for instance it is a model for the competition of three species.Os problemas do foco-centro e da isocronicidade são dois problemas clássicos da teoria qualitativa das equações diferenciais ordinárias (EDOs). Apesar de tais problemas serem investigados a mais de cem anos ainda pouco se sabe sobre eles. Recentemente o uso e desenvolvimento de ferramentas algebro-computacionais tem contribuído significativamente em seu avanço. O objetivo desta tese é colaborar com o estudo do problema do foco-centro e da isocronicidade. Utilizando ferramentas algebro-computacionais encontramos condições para a existência simultânea de dois centros em famílias de sistemas diferenciais quínticos com simetria. O estudo sobre a existência simultânea de dois centros é também conhecido como problema do bi-centro. Investigamos condições para a isocronicidade de centros para famílias de sistemas cubicos e quínticos e estudamos o comportamento global de suas órbitas no disco de Poincaré. Finalmente, tratamos da existência de superfícies invariantes e integrais primeiras para uma familia de sistemas 3-dimensionais encontrado entre outras situações na modelagem da competição entre três espécies e conhecido como sistema de May-Leonard.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Regilene Delazari dos SantosFernandes, Wilker Thiago Resende2017-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-080613/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-12092017-080613Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Centers and isochronicity of some polynomial differential systems
Centros e isocronicidade de alguns sistemas diferenciais polinomiais
title Centers and isochronicity of some polynomial differential systems
spellingShingle Centers and isochronicity of some polynomial differential systems
Fernandes, Wilker Thiago Resende
Centros isócronos
Curvas e superfícies invariantes
Darboux integrability
Decomposição primária de ideais
Differential systems with symmetry
Integrabilidade Darbouxiana
Invariant surfaces and curves
Isochronous centers
Primary decompositions of ideals
Sistemas diferenciais com simetria
title_short Centers and isochronicity of some polynomial differential systems
title_full Centers and isochronicity of some polynomial differential systems
title_fullStr Centers and isochronicity of some polynomial differential systems
title_full_unstemmed Centers and isochronicity of some polynomial differential systems
title_sort Centers and isochronicity of some polynomial differential systems
author Fernandes, Wilker Thiago Resende
author_facet Fernandes, Wilker Thiago Resende
author_role author
dc.contributor.none.fl_str_mv Oliveira, Regilene Delazari dos Santos
dc.contributor.author.fl_str_mv Fernandes, Wilker Thiago Resende
dc.subject.por.fl_str_mv Centros isócronos
Curvas e superfícies invariantes
Darboux integrability
Decomposição primária de ideais
Differential systems with symmetry
Integrabilidade Darbouxiana
Invariant surfaces and curves
Isochronous centers
Primary decompositions of ideals
Sistemas diferenciais com simetria
topic Centros isócronos
Curvas e superfícies invariantes
Darboux integrability
Decomposição primária de ideais
Differential systems with symmetry
Integrabilidade Darbouxiana
Invariant surfaces and curves
Isochronous centers
Primary decompositions of ideals
Sistemas diferenciais com simetria
description The center-focus and isochronicity problems are two classic problem in the qualitative theory of ordinary differential equations (ODEs). Although such problems have been studied during more than hundred years a complete understanding of them is far from be reached. Recently the computational algebra tools have been contributing significantly with the development of such problems. The aim of this thesis is to contribute with the studies of the center-focus and isochronicity problem. Using computational algebra tools we find conditions for the existence of two simultaneous centers for a family of quintic systems possessing symmetry. The studies of the simultaneous existence of two centers in differential systems is known as the bi-center problem. We investigate conditions for the isochronicity of centers for families of cubic and quintic systems and we study its global behaviour in the Poincaré disk. Finally, we study the existence of invariant surfaces and first integrals in a family of 3-dimensional systems. Such family is known as the May-Leonard asymmetric system and it appears in modelling, for instance it is a model for the competition of three species.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-080613/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-080613/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256992390840320