Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto

Detalhes bibliográficos
Autor(a) principal: Bianco, Aline Fernanda
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-12082009-110152/
Resumo: Esta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati.
id USP_5a72320b699522cb9448ef7123ae5123
oai_identifier_str oai:teses.usp.br:tde-12082009-110152
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discretoRobust Kalman filters for discrete-time singular systemsConvergenceConvergênciaEstabilidadeEstimativa de estadoFiltragem robustaRobust filteringSingular systemsSistemas singularesStabilityState estimationEsta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati.This thesis considers the optimal robust estimates problem for discrete-time singular dymanic systems. New recursive algorithms are developed for the Kalman filtered and predicted estimated recursions with the corresponding Riccati equations. The singular robust Kalman type filter and the corresponding recursive Riccati equation arer obtained in their most general formulation, extending the results presented in the literature. The quadratic functional developed to deduce this filter combines regularized least squares and penalty functions approaches. The system considered to obtain the estimates is singular, time varying with correlated noises and all parameter matrices of the underlying linear model are subject to uncertainties. The parametric uncertainty is assumed to be norm bounded. The properties of stability and convergence of the Kalman filter for nominal and uncertain system models are proved, where we show that steady state filter is stable and the Riccati recursion associated with this is a nondecreasing monotone sequence with upper bound.Biblioteca Digitais de Teses e Dissertações da USPTerra, Marco HenriqueBianco, Aline Fernanda2009-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-12082009-110152/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-12082009-110152Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
Robust Kalman filters for discrete-time singular systems
title Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
spellingShingle Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
Bianco, Aline Fernanda
Convergence
Convergência
Estabilidade
Estimativa de estado
Filtragem robusta
Robust filtering
Singular systems
Sistemas singulares
Stability
State estimation
title_short Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
title_full Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
title_fullStr Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
title_full_unstemmed Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
title_sort Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
author Bianco, Aline Fernanda
author_facet Bianco, Aline Fernanda
author_role author
dc.contributor.none.fl_str_mv Terra, Marco Henrique
dc.contributor.author.fl_str_mv Bianco, Aline Fernanda
dc.subject.por.fl_str_mv Convergence
Convergência
Estabilidade
Estimativa de estado
Filtragem robusta
Robust filtering
Singular systems
Sistemas singulares
Stability
State estimation
topic Convergence
Convergência
Estabilidade
Estimativa de estado
Filtragem robusta
Robust filtering
Singular systems
Sistemas singulares
Stability
State estimation
description Esta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18133/tde-12082009-110152/
url http://www.teses.usp.br/teses/disponiveis/18/18133/tde-12082009-110152/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090655234818048