Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/ |
Resumo: | In this work we obtain estimates on the fractal dimension of attractors in three different settings: global attractors associated to autonomous dynamical systems, uniform attractors associated to non-autonomous dynamical systems and random uniform attractors associated to non-autonomous random dynamical systems. Firstly we give a simple proof of a result due to Mañé (Springer LNM 898, 230242, 1981) that the global attractor A (as a subset of a Banach space) for a map S is finite-dimensional if DS(x) =C(x)+L(x), where C is compact and L is a contraction (and both are linear). In particular, we show that if S is compact and differentiable then A is finite-dimensional. Using a smoothing property for the differential DS we also prove that A has finite fractal dimension and we make a comparison of this method with Mañés approach. We give applications to an abstract semilinear parabolic equation and to 2D Navier-Stokes equations. Secondly we prove using a smoothing method that uniform attractors have finite fractal dimension on Banach spaces, with bounds in terms of the dimension of the symbol space and a Kolmogorov entropy number. We also show that the smoothing property is useful to prove the finite-dimensionality of uniform attractors in more regular Banach spaces. In addition, we prove that the finite-dimensionality of the hull of a time-dependent function is fully determined by the tails of the function. We give applications to non-autonomous 2D Navier- Stokes and reaction-diffusion equations. Thirdly we prove using a smoothing and a squeezing method that random uniform attractors have finite fractal dimension. Neither of the two methods implies the other. Estimates on the dimension are given in terms of the dimension of the symbol space plus a term arising from the smoothing/squeezing property; the smoothing is applied also to more regular spaces. In this setting we give applications to a stochastic reaction-diffusion equation with scalar additive noise. In addition, a random absorbing set which absorbs itself after a deterministic period of time is constructed. |
id |
USP_5ad8eb1c0aea60f1dab18a20f4036bb4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26032021-135356 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settingsDimensão fractal de atratores para sistemas dinâmicos com aplicações: problemas determinísticos e aleatóriosAtrator globalAtrator uniformeAtrator uniforme aleatórioDimensão fractalDynamical systemsFractal dimensionGlobal attractorRandom uniform attractorSistemas dinâmicosUniform attractorIn this work we obtain estimates on the fractal dimension of attractors in three different settings: global attractors associated to autonomous dynamical systems, uniform attractors associated to non-autonomous dynamical systems and random uniform attractors associated to non-autonomous random dynamical systems. Firstly we give a simple proof of a result due to Mañé (Springer LNM 898, 230242, 1981) that the global attractor A (as a subset of a Banach space) for a map S is finite-dimensional if DS(x) =C(x)+L(x), where C is compact and L is a contraction (and both are linear). In particular, we show that if S is compact and differentiable then A is finite-dimensional. Using a smoothing property for the differential DS we also prove that A has finite fractal dimension and we make a comparison of this method with Mañés approach. We give applications to an abstract semilinear parabolic equation and to 2D Navier-Stokes equations. Secondly we prove using a smoothing method that uniform attractors have finite fractal dimension on Banach spaces, with bounds in terms of the dimension of the symbol space and a Kolmogorov entropy number. We also show that the smoothing property is useful to prove the finite-dimensionality of uniform attractors in more regular Banach spaces. In addition, we prove that the finite-dimensionality of the hull of a time-dependent function is fully determined by the tails of the function. We give applications to non-autonomous 2D Navier- Stokes and reaction-diffusion equations. Thirdly we prove using a smoothing and a squeezing method that random uniform attractors have finite fractal dimension. Neither of the two methods implies the other. Estimates on the dimension are given in terms of the dimension of the symbol space plus a term arising from the smoothing/squeezing property; the smoothing is applied also to more regular spaces. In this setting we give applications to a stochastic reaction-diffusion equation with scalar additive noise. In addition, a random absorbing set which absorbs itself after a deterministic period of time is constructed.Neste trabalho obtemos estimativas para a dimensão fractal de atratores em três contextos: atratores globais associados a sistemas dinâmicos autônomos, atratores uniformes associados a sistemas dinâmicos não-autônomos e atratores uniformes aleatórios associados a sistemas dinâmicos aleatórios não-autônomos. Primeiro, apresentamos uma simples prova de um resultado de Mañé (Springer LNM 898, 230242, 1981) no qual o atrator global A (como um subconjunto de um espaço de Banach) para uma função S tem dimensão fractal finita se DS(x) =C(x)+L(x), onde C é compacto e L é uma contração (e ambos são operadores lineares). Em particular, provamos que se S é compacto e diferenciável então A tem dimensão fractal finita. Supondo uma propriedade de regularização (conhecida como smoothing) para a diferencial DS provamos também que A tem dimensão finita e com isso fazemos uma comparação deste método com o já conhecido método de Mañé. Aplicamos nossos resultados teóricos em um problema parabólico semilinear abstrato e em equações de Navier-Stokes em 2D. Segundo, provamos usando também uma propriedade smoothing que atratores uniformes têm dimensão fractal finita em espaços de Banach, com estimativas dadas em termos da dimensão fractal do espaço símbolo mais um número de entropia de Kolmogorov. A propriedade smoothing é ainda utilizada para obtermos estimativas na dimensão fractal de atratores uniformes em espaços com maior regularização. Além disso, provamos que a dimensão fractal da envoltória (hull) de uma função dependente do tempo é completamente determinada pelo seu comportamento para tempos grandes (positivos e negativos). Aplicações são dadas em equações não-autônomas de reação-difusão e Navier-Stokes em 2D. Terceiro, utilizamos métodos smoothing e squeezing (\"compressão\") para obtermos estimativas na dimensão fractal de atratores uniformes aleatórios. Em geral a propriedade squeezing pode ser vista como um caso particular da smoothing, mas neste caso dos sistemas dinâmicos aleatórios não-autônomos isso não ocorre, e nenhum dos métodos implica no outro. Mais uma vez as estimativas na dimensão fractal são dadas em termos da dimensão do espaço símbolo e dos parâmetros aleatórios da propriedade smoothing/squeezing; a propriedade smoothing é utilizada ainda para obtermos estimativas na dimensão fractal em espaços mais regulares. Finalmente, consideramos uma perturbação aleatória (a exemplo de um ruído escalar aditivo) da equação de reação-difusão não-autônoma tratada anteriormente. Neste ponto é importante a construção de conjuntos aleatórios que absorvem a si próprios a partir de um período determinístico de tempo, situação a princípio não esperada.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, Alexandre Nolasco deCunha, Arthur Cavalcante2021-01-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-03-26T20:03:02Zoai:teses.usp.br:tde-26032021-135356Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-03-26T20:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings Dimensão fractal de atratores para sistemas dinâmicos com aplicações: problemas determinísticos e aleatórios |
title |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
spellingShingle |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings Cunha, Arthur Cavalcante Atrator global Atrator uniforme Atrator uniforme aleatório Dimensão fractal Dynamical systems Fractal dimension Global attractor Random uniform attractor Sistemas dinâmicos Uniform attractor |
title_short |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
title_full |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
title_fullStr |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
title_full_unstemmed |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
title_sort |
Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings |
author |
Cunha, Arthur Cavalcante |
author_facet |
Cunha, Arthur Cavalcante |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, Alexandre Nolasco de |
dc.contributor.author.fl_str_mv |
Cunha, Arthur Cavalcante |
dc.subject.por.fl_str_mv |
Atrator global Atrator uniforme Atrator uniforme aleatório Dimensão fractal Dynamical systems Fractal dimension Global attractor Random uniform attractor Sistemas dinâmicos Uniform attractor |
topic |
Atrator global Atrator uniforme Atrator uniforme aleatório Dimensão fractal Dynamical systems Fractal dimension Global attractor Random uniform attractor Sistemas dinâmicos Uniform attractor |
description |
In this work we obtain estimates on the fractal dimension of attractors in three different settings: global attractors associated to autonomous dynamical systems, uniform attractors associated to non-autonomous dynamical systems and random uniform attractors associated to non-autonomous random dynamical systems. Firstly we give a simple proof of a result due to Mañé (Springer LNM 898, 230242, 1981) that the global attractor A (as a subset of a Banach space) for a map S is finite-dimensional if DS(x) =C(x)+L(x), where C is compact and L is a contraction (and both are linear). In particular, we show that if S is compact and differentiable then A is finite-dimensional. Using a smoothing property for the differential DS we also prove that A has finite fractal dimension and we make a comparison of this method with Mañés approach. We give applications to an abstract semilinear parabolic equation and to 2D Navier-Stokes equations. Secondly we prove using a smoothing method that uniform attractors have finite fractal dimension on Banach spaces, with bounds in terms of the dimension of the symbol space and a Kolmogorov entropy number. We also show that the smoothing property is useful to prove the finite-dimensionality of uniform attractors in more regular Banach spaces. In addition, we prove that the finite-dimensionality of the hull of a time-dependent function is fully determined by the tails of the function. We give applications to non-autonomous 2D Navier- Stokes and reaction-diffusion equations. Thirdly we prove using a smoothing and a squeezing method that random uniform attractors have finite fractal dimension. Neither of the two methods implies the other. Estimates on the dimension are given in terms of the dimension of the symbol space plus a term arising from the smoothing/squeezing property; the smoothing is applied also to more regular spaces. In this setting we give applications to a stochastic reaction-diffusion equation with scalar additive noise. In addition, a random absorbing set which absorbs itself after a deterministic period of time is constructed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257354015342592 |