Learning probabilistic relational models: a novel approach.

Detalhes bibliográficos
Autor(a) principal: Mormille, Luiz Henrique Barbosa
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-12122018-091504/
Resumo: While most statistical learning methods are designed to work with data stored in a single table, many large datasets are stored in relational database systems. Probabilistic Relational Models (PRM) extend Bayesian networks by introducing relations and individuals, thus making it possible to represent information in a relational database. However, learning a PRM from relational data is a more complex task than learning a Bayesian Network from \"flat\" data. The main difficulties that arise while learning a PRM are establishing what are the legal dependency structures, searching for possible structures, and scoring them. This thesis focuses on the development of a novel approach to learn the structure of a PRM, describes a package in the R language to support the learning framework, and applies it to a real, large scale scenario of a city named Atibaia, in the state of São Paulo, Brazil. The research is based on a database combining three different tables, each representing one class in the domain of study. The first table contains 27 attributes from 110,816 citizens of Atibaia. The second table contains 9 attributes from 20,162 companies located in the city. And finally, the third table has 8 attributes from 327 census sectors (small territorial units that comprise the city of Atibaia). The proposed framework is applied to learn a PRM structure and parameters from the database. The model is used to verify if the Social Class of a person can be explained by the location where they live, their neighbors, and the companies nearby. Preliminary experiments have been conducted and a paper published in the 2017 Symposium on Knowledge Discovery, Mining and Learning (KDMiLe). The algorithm performance was further evaluated by extensive experimentation, and a broader study using Serasa Experian data was conducted. Finally, the package in the R language that supports our method was refined along with proper documentation and a tutorial.
id USP_5fd2d74acf05396203730f89508bb83a
oai_identifier_str oai:teses.usp.br:tde-12122018-091504
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Learning probabilistic relational models: a novel approach.Aprendendo modelos probabilísticos relacionais: uma nova abordagem.Bayesian networkInductive logic programmingMineração de dadosModelos para processos estocásticosMulti-relational data miningProbabilistic graphical modelsProgramação lógicaWhile most statistical learning methods are designed to work with data stored in a single table, many large datasets are stored in relational database systems. Probabilistic Relational Models (PRM) extend Bayesian networks by introducing relations and individuals, thus making it possible to represent information in a relational database. However, learning a PRM from relational data is a more complex task than learning a Bayesian Network from \"flat\" data. The main difficulties that arise while learning a PRM are establishing what are the legal dependency structures, searching for possible structures, and scoring them. This thesis focuses on the development of a novel approach to learn the structure of a PRM, describes a package in the R language to support the learning framework, and applies it to a real, large scale scenario of a city named Atibaia, in the state of São Paulo, Brazil. The research is based on a database combining three different tables, each representing one class in the domain of study. The first table contains 27 attributes from 110,816 citizens of Atibaia. The second table contains 9 attributes from 20,162 companies located in the city. And finally, the third table has 8 attributes from 327 census sectors (small territorial units that comprise the city of Atibaia). The proposed framework is applied to learn a PRM structure and parameters from the database. The model is used to verify if the Social Class of a person can be explained by the location where they live, their neighbors, and the companies nearby. Preliminary experiments have been conducted and a paper published in the 2017 Symposium on Knowledge Discovery, Mining and Learning (KDMiLe). The algorithm performance was further evaluated by extensive experimentation, and a broader study using Serasa Experian data was conducted. Finally, the package in the R language that supports our method was refined along with proper documentation and a tutorial.Embora a maioria dos métodos de aprendizado estatístico tenha sido desenvolvida para se trabalhar com dados armazenados em uma única tabela, muitas bases de dados estão armazenadas em bancos de dados relacionais. Modelos Probabilísticos Relacionai (PRM) estendem Redes Bayesianas introduzindo relações e indivíduos, tornando possível a representação de informação em uma base de dados relacional. Entretanto, aprender um PRM através de dados relacionais é uma tarefa mais complexa que aprender uma Rede Bayesiana de uma única tabela. As maiores dificuldades que se impõe enquanto se aprende um PRM são estabelecer quais são as estruturas de dependência legais, procurar por possíveis estruturas, e avalia-las. Esta tese foca em desenvolver um novo método de aprendizado de estruturas de PRM, descrever um pacote na linguagem R que suporte este método e aplica-lo a um cenário real e de grande escala, a cidade de Atibaia, no estado de São Paulo, Brasil. Esta pesquisa está baseada em uma base de dados combinando três tabelas distintas, cada uma representando uma classe no domínio de estudo. A primeira tabela contém 27 atributos de 110.816 habitantes de Atibaia, e a segunda tabela contém 9 atributos de 20.162 empresas da cidade. Por fim, a terceira tabela possui 8 atributos para 327 setores censitários (pequenas unidades territoriais que formam a cidade de Atibaia). A proposta é aplicada para aprender-se a estrutura de um PRM e seus parâmetros através desta base de dados. O modelo foi utilizado para verificar se a classe social de uma pessoa pode ser explicada pelo local onde ela vive, seus vizinhos e as companhias próximas. Experimentos preliminares foram conduzidos e um artigo foi publicado no Symposium on Knowledge Discovery, Mining and Learning (KDMiLe). O desempenho do algoritmo foi reavaliada através de extensiva experimentação, e um estudo mais amplo foi conduzido com os dados da Serasa Experian. Por fim, o pacote em R que suporta o método proposto foi refinado, e documentação e tutorial apropriado foram descritos.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiMormille, Luiz Henrique Barbosa2018-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-12122018-091504/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:51:24Zoai:teses.usp.br:tde-12122018-091504Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:51:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Learning probabilistic relational models: a novel approach.
Aprendendo modelos probabilísticos relacionais: uma nova abordagem.
title Learning probabilistic relational models: a novel approach.
spellingShingle Learning probabilistic relational models: a novel approach.
Mormille, Luiz Henrique Barbosa
Bayesian network
Inductive logic programming
Mineração de dados
Modelos para processos estocásticos
Multi-relational data mining
Probabilistic graphical models
Programação lógica
title_short Learning probabilistic relational models: a novel approach.
title_full Learning probabilistic relational models: a novel approach.
title_fullStr Learning probabilistic relational models: a novel approach.
title_full_unstemmed Learning probabilistic relational models: a novel approach.
title_sort Learning probabilistic relational models: a novel approach.
author Mormille, Luiz Henrique Barbosa
author_facet Mormille, Luiz Henrique Barbosa
author_role author
dc.contributor.none.fl_str_mv Cozman, Fabio Gagliardi
dc.contributor.author.fl_str_mv Mormille, Luiz Henrique Barbosa
dc.subject.por.fl_str_mv Bayesian network
Inductive logic programming
Mineração de dados
Modelos para processos estocásticos
Multi-relational data mining
Probabilistic graphical models
Programação lógica
topic Bayesian network
Inductive logic programming
Mineração de dados
Modelos para processos estocásticos
Multi-relational data mining
Probabilistic graphical models
Programação lógica
description While most statistical learning methods are designed to work with data stored in a single table, many large datasets are stored in relational database systems. Probabilistic Relational Models (PRM) extend Bayesian networks by introducing relations and individuals, thus making it possible to represent information in a relational database. However, learning a PRM from relational data is a more complex task than learning a Bayesian Network from \"flat\" data. The main difficulties that arise while learning a PRM are establishing what are the legal dependency structures, searching for possible structures, and scoring them. This thesis focuses on the development of a novel approach to learn the structure of a PRM, describes a package in the R language to support the learning framework, and applies it to a real, large scale scenario of a city named Atibaia, in the state of São Paulo, Brazil. The research is based on a database combining three different tables, each representing one class in the domain of study. The first table contains 27 attributes from 110,816 citizens of Atibaia. The second table contains 9 attributes from 20,162 companies located in the city. And finally, the third table has 8 attributes from 327 census sectors (small territorial units that comprise the city of Atibaia). The proposed framework is applied to learn a PRM structure and parameters from the database. The model is used to verify if the Social Class of a person can be explained by the location where they live, their neighbors, and the companies nearby. Preliminary experiments have been conducted and a paper published in the 2017 Symposium on Knowledge Discovery, Mining and Learning (KDMiLe). The algorithm performance was further evaluated by extensive experimentation, and a broader study using Serasa Experian data was conducted. Finally, the package in the R language that supports our method was refined along with proper documentation and a tutorial.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-12122018-091504/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-12122018-091504/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256505500303360