Learning acyclic probabilistic logic programs from data.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3141/tde-27022018-090821/ |
Resumo: | To learn a probabilistic logic program is to find a set of probabilistic rules that best fits some data, in order to explain how attributes relate to one another and to predict the occurrence of new instantiations of these attributes. In this work, we focus on acyclic programs, because in this case the meaning of the program is quite transparent and easy to grasp. We propose that the learning process for a probabilistic acyclic logic program should be guided by a scoring function imported from the literature on Bayesian network learning. We suggest novel techniques that lead to orders of magnitude improvements in the current state-of-art represented by the ProbLog package. In addition, we present novel techniques for learning the structure of acyclic probabilistic logic programs. |
id |
USP_f66fa35138bb4ed20e5447dfbde74282 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27022018-090821 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Learning acyclic probabilistic logic programs from data.Aprendizado de programas lógico-probabilísticos acíclicos.Aprendizado computacionalExplainable AIMachine learningProbabilistic logic programmingProgramação lógicaTo learn a probabilistic logic program is to find a set of probabilistic rules that best fits some data, in order to explain how attributes relate to one another and to predict the occurrence of new instantiations of these attributes. In this work, we focus on acyclic programs, because in this case the meaning of the program is quite transparent and easy to grasp. We propose that the learning process for a probabilistic acyclic logic program should be guided by a scoring function imported from the literature on Bayesian network learning. We suggest novel techniques that lead to orders of magnitude improvements in the current state-of-art represented by the ProbLog package. In addition, we present novel techniques for learning the structure of acyclic probabilistic logic programs.O aprendizado de um programa lógico probabilístico consiste em encontrar um conjunto de regras lógico-probabilísticas que melhor se adequem aos dados, a fim de explicar de que forma estão relacionados os atributos observados e predizer a ocorrência de novas instanciações destes atributos. Neste trabalho focamos em programas acíclicos, cujo significado é bastante claro e fácil de interpretar. Propõe-se que o processo de aprendizado de programas lógicos probabilísticos acíclicos deve ser guiado por funções de avaliação importadas da literatura de aprendizado de redes Bayesianas. Neste trabalho s~ao sugeridas novas técnicas para aprendizado de parâmetros que contribuem para uma melhora significativa na eficiência computacional do estado da arte representado pelo pacote ProbLog. Além disto, apresentamos novas técnicas para aprendizado da estrutura de programas lógicos probabilísticos acíclicos.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiFaria, Francisco Henrique Otte Vieira de2017-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-27022018-090821/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:51:24Zoai:teses.usp.br:tde-27022018-090821Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:51:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Learning acyclic probabilistic logic programs from data. Aprendizado de programas lógico-probabilísticos acíclicos. |
title |
Learning acyclic probabilistic logic programs from data. |
spellingShingle |
Learning acyclic probabilistic logic programs from data. Faria, Francisco Henrique Otte Vieira de Aprendizado computacional Explainable AI Machine learning Probabilistic logic programming Programação lógica |
title_short |
Learning acyclic probabilistic logic programs from data. |
title_full |
Learning acyclic probabilistic logic programs from data. |
title_fullStr |
Learning acyclic probabilistic logic programs from data. |
title_full_unstemmed |
Learning acyclic probabilistic logic programs from data. |
title_sort |
Learning acyclic probabilistic logic programs from data. |
author |
Faria, Francisco Henrique Otte Vieira de |
author_facet |
Faria, Francisco Henrique Otte Vieira de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
dc.contributor.author.fl_str_mv |
Faria, Francisco Henrique Otte Vieira de |
dc.subject.por.fl_str_mv |
Aprendizado computacional Explainable AI Machine learning Probabilistic logic programming Programação lógica |
topic |
Aprendizado computacional Explainable AI Machine learning Probabilistic logic programming Programação lógica |
description |
To learn a probabilistic logic program is to find a set of probabilistic rules that best fits some data, in order to explain how attributes relate to one another and to predict the occurrence of new instantiations of these attributes. In this work, we focus on acyclic programs, because in this case the meaning of the program is quite transparent and easy to grasp. We propose that the learning process for a probabilistic acyclic logic program should be guided by a scoring function imported from the literature on Bayesian network learning. We suggest novel techniques that lead to orders of magnitude improvements in the current state-of-art represented by the ProbLog package. In addition, we present novel techniques for learning the structure of acyclic probabilistic logic programs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-27022018-090821/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-27022018-090821/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256538280886272 |