Advances on the Birnbaum-Saunders distribution

Detalhes bibliográficos
Autor(a) principal: Nakamura, Luiz Ricardo
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-30092016-171320/
Resumo: The Birnbaum-Saunders (BS) distribution is the most popular model used to describe lifetime process under fatigue. Throughout the years, this distribution has received a wide ranging of applications, demanding some more flexible extensions to solve more complex problems. One of the most well-known extensions of the BS distribution is the generalized Birnbaum- Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BSSC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the BS-SC distribution was previously developed in the literature, it was never deeply studied and hence, in this thesis, we provide a full Bayesian study and develop a tool to generate random numbers from this distribution. Further, we develop a very flexible regression model, that admits different degrees of skewness and kurtosis, based on the BSGT distribution using the generalized additive models for location, scale and shape (GAMLSS) framework. We also introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP) family of distributions, which contains several special or limiting cases already published in the literature, including the GBS family. The main feature of the new family is that it can produce both unimodal and bimodal shapes depending on its parameter values. We also introduce this new family of distributions into the GAMLSS framework, in order to model any or all the parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. Throughout this thesis we present five different applications in real data sets in order to illustrate the developed theoretical results.
id USP_60127d9f40d1858dc96dc853df859f1d
oai_identifier_str oai:teses.usp.br:tde-30092016-171320
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Advances on the Birnbaum-Saunders distributionAvanços na distribuição Birnbaum-SaundersDistribuição Birnbaum-Saunders generalizadaGAMLSSGAMLSSGeneralized additive modelsGeneralized Birnbaum-Saunders distributionModelos aditivos generalizadosNon-parametric regressionPenalized splinesR softwareRegressão não-paramétricaSoftware RSplines penalizadosThe Birnbaum-Saunders (BS) distribution is the most popular model used to describe lifetime process under fatigue. Throughout the years, this distribution has received a wide ranging of applications, demanding some more flexible extensions to solve more complex problems. One of the most well-known extensions of the BS distribution is the generalized Birnbaum- Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BSSC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the BS-SC distribution was previously developed in the literature, it was never deeply studied and hence, in this thesis, we provide a full Bayesian study and develop a tool to generate random numbers from this distribution. Further, we develop a very flexible regression model, that admits different degrees of skewness and kurtosis, based on the BSGT distribution using the generalized additive models for location, scale and shape (GAMLSS) framework. We also introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP) family of distributions, which contains several special or limiting cases already published in the literature, including the GBS family. The main feature of the new family is that it can produce both unimodal and bimodal shapes depending on its parameter values. We also introduce this new family of distributions into the GAMLSS framework, in order to model any or all the parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. Throughout this thesis we present five different applications in real data sets in order to illustrate the developed theoretical results.A distribuição Birnbaum-Saunders (BS) é o modelo mais popular utilizado para descrever processos de fadiga. Ao longo dos anos, essa distribuição vem recebendo aplicações nas mais diversas áreas, demandando assim algumas extensões mais flexíveis para resolver problemas mais complexos. Uma das extensões mais conhecidas na literatura é a família de distribuições Birnbaum-Saunders generalizada (GBS), que inclui as distribuições Birnbaum-Saunders casoespecial (BS-SC) e Birnbaum-Saunders t generalizada (BSGT) como modelos especiais. Embora a distribuição BS-SC tenha sido previamente desenvolvida na literatura, nunca foi estudada mais profundamente e, assim, nesta tese, um estudo bayesiano é desenvolvido acerca da mesma além de um novo gerador de números aleatórios dessa distribuição ser apresentado. Adicionalmente, um modelo de regressão baseado na distribuição BSGT é desenvolvido utilizando-se os modelos aditivos generalizados para locação, escala e forma (GAMLSS), os quais apresentam grande flexibilidade tanto para a assimetria como para a curtose. Uma nova extensão da distribuição BS também é apresentada, denominada família de distribuições Birnbaum-Saunders potência (BSP), que contém inúmeros casos especiais ou limites já publicados na literatura, incluindo a família GBS. A principal característica desta nova família é que ela é capaz de produzir formas tanto uni como bimodais dependendo do valor de seus parâmetros. Esta nova família também é introduzida na estrutura dos modelos GAMLSS para fornecer uma ferramenta capaz de modelar todos os parâmetros da distribuição como funções lineares e/ou não-lineares suavizadas de variáveis explicativas. Ao longo desta tese são apresentadas cinco diferentes aplicações em conjuntos de dados reais para ilustrar os resultados teóricos obtidos.Biblioteca Digitais de Teses e Dissertações da USPLeandro, Roseli AparecidaNakamura, Luiz Ricardo2016-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-30092016-171320/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:03:48Zoai:teses.usp.br:tde-30092016-171320Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Advances on the Birnbaum-Saunders distribution
Avanços na distribuição Birnbaum-Saunders
title Advances on the Birnbaum-Saunders distribution
spellingShingle Advances on the Birnbaum-Saunders distribution
Nakamura, Luiz Ricardo
Distribuição Birnbaum-Saunders generalizada
GAMLSS
GAMLSS
Generalized additive models
Generalized Birnbaum-Saunders distribution
Modelos aditivos generalizados
Non-parametric regression
Penalized splines
R software
Regressão não-paramétrica
Software R
Splines penalizados
title_short Advances on the Birnbaum-Saunders distribution
title_full Advances on the Birnbaum-Saunders distribution
title_fullStr Advances on the Birnbaum-Saunders distribution
title_full_unstemmed Advances on the Birnbaum-Saunders distribution
title_sort Advances on the Birnbaum-Saunders distribution
author Nakamura, Luiz Ricardo
author_facet Nakamura, Luiz Ricardo
author_role author
dc.contributor.none.fl_str_mv Leandro, Roseli Aparecida
dc.contributor.author.fl_str_mv Nakamura, Luiz Ricardo
dc.subject.por.fl_str_mv Distribuição Birnbaum-Saunders generalizada
GAMLSS
GAMLSS
Generalized additive models
Generalized Birnbaum-Saunders distribution
Modelos aditivos generalizados
Non-parametric regression
Penalized splines
R software
Regressão não-paramétrica
Software R
Splines penalizados
topic Distribuição Birnbaum-Saunders generalizada
GAMLSS
GAMLSS
Generalized additive models
Generalized Birnbaum-Saunders distribution
Modelos aditivos generalizados
Non-parametric regression
Penalized splines
R software
Regressão não-paramétrica
Software R
Splines penalizados
description The Birnbaum-Saunders (BS) distribution is the most popular model used to describe lifetime process under fatigue. Throughout the years, this distribution has received a wide ranging of applications, demanding some more flexible extensions to solve more complex problems. One of the most well-known extensions of the BS distribution is the generalized Birnbaum- Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BSSC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the BS-SC distribution was previously developed in the literature, it was never deeply studied and hence, in this thesis, we provide a full Bayesian study and develop a tool to generate random numbers from this distribution. Further, we develop a very flexible regression model, that admits different degrees of skewness and kurtosis, based on the BSGT distribution using the generalized additive models for location, scale and shape (GAMLSS) framework. We also introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP) family of distributions, which contains several special or limiting cases already published in the literature, including the GBS family. The main feature of the new family is that it can produce both unimodal and bimodal shapes depending on its parameter values. We also introduce this new family of distributions into the GAMLSS framework, in order to model any or all the parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. Throughout this thesis we present five different applications in real data sets in order to illustrate the developed theoretical results.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-30092016-171320/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-30092016-171320/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257470140940288