Análise de dados categorizados com omissão
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04122007-192457/ |
Resumo: | Neste trabalho aborda-se aspectos teóricos, computacionais e aplicados de análises clássicas de dados categorizados com omissão. Uma revisão da literatura é apresentada enquanto se introduz os mecanismos de omissão, mostrando suas características e implicações nas inferências de interesse por meio de um exemplo considerando duas variáveis respostas dicotômicas e estudos de simulação. Amplia-se a modelagem descrita em Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) da distribuição multinomial para a produto de multinomiais para possibilitar a inclusão de variáveis explicativas na análise. Os resultados são desenvolvidos em formulação matricial adequada para a implementação computacional, que é realizada com a construção de uma biblioteca para o ambiente estatístico R, a qual é disponibilizada para facilitar o traçado das inferências descritas nesta dissertação. A aplicação da teoria é ilustrada por meio de cinco exemplos de características diversas, uma vez que se ajusta modelos estruturais lineares (homogeneidade marginal), log-lineares (independência, razão de chances adjacentes comum) e funcionais lineares (kappa, kappa ponderado, sensibilidade/especificidade, valor preditivo positivo/negativo) para as probabilidades de categorização. Os padrões de omissão também são variados, com omissões em uma ou duas variáveis, confundimento de células vizinhas, sem ou com subpopulações. |
id |
USP_625cb0f1ba80bd8a2e728081395ad712 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04122007-192457 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de dados categorizados com omissãoAnalysis of categorical data with missingnesscategorical datadados categorizadosdados faltantesdados incompletosdados omissosignorable mechanismincomplete dataMARMARMCARMCARmecanismo ignorávelmecanismo não-ignorávelmissing dataMNARMNARmodelos de seleçãonon-ignorable mechanismselection modelsNeste trabalho aborda-se aspectos teóricos, computacionais e aplicados de análises clássicas de dados categorizados com omissão. Uma revisão da literatura é apresentada enquanto se introduz os mecanismos de omissão, mostrando suas características e implicações nas inferências de interesse por meio de um exemplo considerando duas variáveis respostas dicotômicas e estudos de simulação. Amplia-se a modelagem descrita em Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) da distribuição multinomial para a produto de multinomiais para possibilitar a inclusão de variáveis explicativas na análise. Os resultados são desenvolvidos em formulação matricial adequada para a implementação computacional, que é realizada com a construção de uma biblioteca para o ambiente estatístico R, a qual é disponibilizada para facilitar o traçado das inferências descritas nesta dissertação. A aplicação da teoria é ilustrada por meio de cinco exemplos de características diversas, uma vez que se ajusta modelos estruturais lineares (homogeneidade marginal), log-lineares (independência, razão de chances adjacentes comum) e funcionais lineares (kappa, kappa ponderado, sensibilidade/especificidade, valor preditivo positivo/negativo) para as probabilidades de categorização. Os padrões de omissão também são variados, com omissões em uma ou duas variáveis, confundimento de células vizinhas, sem ou com subpopulações.We consider theoretical, computational and applied aspects of classical categorical data analyses with missingness. We present a literature review while introducing the missingness mechanisms, highlighting their characteristics and implications in the inferences of interest by means of an example involving two binary responses and simulation studies. We extend the multinomial modeling scenario described in Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) to the product-multinomial setup to allow for the inclusion of explanatory variables. We develop the results in matrix formulation and implement the computational procedures via subroutines written under R statistical environment. We illustrate the application of the theory by means of five examples with different characteristics, fitting structural linear (marginal homogeneity), log-linear (independence, constant adjacent odds ratio) and functional linear models (kappa, weighted kappa, sensitivity/specificity, positive/negative predictive value) for the marginal probabilities. The missingness patterns includes missingness in one or two variables, neighbor cells confounded, with or without explanatory variables.Biblioteca Digitais de Teses e Dissertações da USPSinger, Julio da MottaPoleto, Frederico Zanqueta2006-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-04122007-192457/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-14T23:50:02Zoai:teses.usp.br:tde-04122007-192457Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-14T23:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de dados categorizados com omissão Analysis of categorical data with missingness |
title |
Análise de dados categorizados com omissão |
spellingShingle |
Análise de dados categorizados com omissão Poleto, Frederico Zanqueta categorical data dados categorizados dados faltantes dados incompletos dados omissos ignorable mechanism incomplete data MAR MAR MCAR MCAR mecanismo ignorável mecanismo não-ignorável missing data MNAR MNAR modelos de seleção non-ignorable mechanism selection models |
title_short |
Análise de dados categorizados com omissão |
title_full |
Análise de dados categorizados com omissão |
title_fullStr |
Análise de dados categorizados com omissão |
title_full_unstemmed |
Análise de dados categorizados com omissão |
title_sort |
Análise de dados categorizados com omissão |
author |
Poleto, Frederico Zanqueta |
author_facet |
Poleto, Frederico Zanqueta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Singer, Julio da Motta |
dc.contributor.author.fl_str_mv |
Poleto, Frederico Zanqueta |
dc.subject.por.fl_str_mv |
categorical data dados categorizados dados faltantes dados incompletos dados omissos ignorable mechanism incomplete data MAR MAR MCAR MCAR mecanismo ignorável mecanismo não-ignorável missing data MNAR MNAR modelos de seleção non-ignorable mechanism selection models |
topic |
categorical data dados categorizados dados faltantes dados incompletos dados omissos ignorable mechanism incomplete data MAR MAR MCAR MCAR mecanismo ignorável mecanismo não-ignorável missing data MNAR MNAR modelos de seleção non-ignorable mechanism selection models |
description |
Neste trabalho aborda-se aspectos teóricos, computacionais e aplicados de análises clássicas de dados categorizados com omissão. Uma revisão da literatura é apresentada enquanto se introduz os mecanismos de omissão, mostrando suas características e implicações nas inferências de interesse por meio de um exemplo considerando duas variáveis respostas dicotômicas e estudos de simulação. Amplia-se a modelagem descrita em Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) da distribuição multinomial para a produto de multinomiais para possibilitar a inclusão de variáveis explicativas na análise. Os resultados são desenvolvidos em formulação matricial adequada para a implementação computacional, que é realizada com a construção de uma biblioteca para o ambiente estatístico R, a qual é disponibilizada para facilitar o traçado das inferências descritas nesta dissertação. A aplicação da teoria é ilustrada por meio de cinco exemplos de características diversas, uma vez que se ajusta modelos estruturais lineares (homogeneidade marginal), log-lineares (independência, razão de chances adjacentes comum) e funcionais lineares (kappa, kappa ponderado, sensibilidade/especificidade, valor preditivo positivo/negativo) para as probabilidades de categorização. Os padrões de omissão também são variados, com omissões em uma ou duas variáveis, confundimento de células vizinhas, sem ou com subpopulações. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04122007-192457/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04122007-192457/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090390663364608 |