Sistemas vinculados e espaços curvos

Detalhes bibliográficos
Autor(a) principal: Oliveira, Newton Theophilo de
Data de Publicação: 1981
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/54/54131/tde-19022015-175629/
Resumo: A parte inicial desta tese está relacionada com o formalismo das integrais de Feynman num espaço curvo. Desenvolvemos um processo de quantização para uma partícula movendo-se em uma variedade Riemeniana de dimensão n a qual tem o mérito de ser canonicamente invariante. O método é baseado na teoria de Faddeev-Fradkin para sistemas com Lagrangeanas degeneradas e conduz à proposição de De Witt para a equação de Schredinger. Na segunda parte tratamos dos processos aleatórios. Obtemos uma equação de evolução para um sistema de partículas não interagentes movendo-se em um espaço curvo considerado como um espaço euclidiano vinculado. A equação de evolução reproduz corretamente, para tempos pequenos, o comportamento mecânico do sistema e, para intervalos de tempos maiores, a equação da difusão. Fazemos uma aplicação para o rotor planar sujeito à colisões térmicas como uma primeira aproximação ao estudo da auto correlação de dipolos rígidos
id USP_68e76c95fc18cb2f678fd5df8d039455
oai_identifier_str oai:teses.usp.br:tde-19022015-175629
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sistemas vinculados e espaços curvosNot availableNão disponívelNot availableA parte inicial desta tese está relacionada com o formalismo das integrais de Feynman num espaço curvo. Desenvolvemos um processo de quantização para uma partícula movendo-se em uma variedade Riemeniana de dimensão n a qual tem o mérito de ser canonicamente invariante. O método é baseado na teoria de Faddeev-Fradkin para sistemas com Lagrangeanas degeneradas e conduz à proposição de De Witt para a equação de Schredinger. Na segunda parte tratamos dos processos aleatórios. Obtemos uma equação de evolução para um sistema de partículas não interagentes movendo-se em um espaço curvo considerado como um espaço euclidiano vinculado. A equação de evolução reproduz corretamente, para tempos pequenos, o comportamento mecânico do sistema e, para intervalos de tempos maiores, a equação da difusão. Fazemos uma aplicação para o rotor planar sujeito à colisões térmicas como uma primeira aproximação ao estudo da auto correlação de dipolos rígidosThe first part of this work deals with Feynman\'s path integral formalism in eurved spaees. We develop a quantization procedure for a particle moving in a Riemannian manifold of dimension which has the merit of being fully canonically invariant. It is based on the theory of Faddeev-Fradkin for Hamiltonian constrained systems and leads exactly to De Witt\'s proposal for the Schrôdinger equation. In the second part we are concerned with random processes An evolution equation is obtained for a sistem of non-interacting particle moving in a curved space considered as a constrained euclidean space. The evolution equation reproduces correctly the short time behaviour of the mecanical sistem and, for longer times, leads to the covariant diffusion equation. An application is made for planar rotators subject to thermal collisions as a first approximation to the study of the self-correlation of rigid dipolesBiblioteca Digitais de Teses e Dissertações da USPSilva Filho, Roberto Leal Lobo eOliveira, Newton Theophilo de1981-05-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/54/54131/tde-19022015-175629/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-19022015-175629Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistemas vinculados e espaços curvos
Not available
title Sistemas vinculados e espaços curvos
spellingShingle Sistemas vinculados e espaços curvos
Oliveira, Newton Theophilo de
Não disponível
Not available
title_short Sistemas vinculados e espaços curvos
title_full Sistemas vinculados e espaços curvos
title_fullStr Sistemas vinculados e espaços curvos
title_full_unstemmed Sistemas vinculados e espaços curvos
title_sort Sistemas vinculados e espaços curvos
author Oliveira, Newton Theophilo de
author_facet Oliveira, Newton Theophilo de
author_role author
dc.contributor.none.fl_str_mv Silva Filho, Roberto Leal Lobo e
dc.contributor.author.fl_str_mv Oliveira, Newton Theophilo de
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description A parte inicial desta tese está relacionada com o formalismo das integrais de Feynman num espaço curvo. Desenvolvemos um processo de quantização para uma partícula movendo-se em uma variedade Riemeniana de dimensão n a qual tem o mérito de ser canonicamente invariante. O método é baseado na teoria de Faddeev-Fradkin para sistemas com Lagrangeanas degeneradas e conduz à proposição de De Witt para a equação de Schredinger. Na segunda parte tratamos dos processos aleatórios. Obtemos uma equação de evolução para um sistema de partículas não interagentes movendo-se em um espaço curvo considerado como um espaço euclidiano vinculado. A equação de evolução reproduz corretamente, para tempos pequenos, o comportamento mecânico do sistema e, para intervalos de tempos maiores, a equação da difusão. Fazemos uma aplicação para o rotor planar sujeito à colisões térmicas como uma primeira aproximação ao estudo da auto correlação de dipolos rígidos
publishDate 1981
dc.date.none.fl_str_mv 1981-05-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/54/54131/tde-19022015-175629/
url http://www.teses.usp.br/teses/disponiveis/54/54131/tde-19022015-175629/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257126686162944