Regressão quantílica para dados censurados

Detalhes bibliográficos
Autor(a) principal: Rasteiro, Louise Rossi
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09072017-141021/
Resumo: A regressão quantílica para dados censurados é uma extensão dos modelos de regressão quantílica que, por levar em consideração a informação das observações censuradas na modelagem, e por apresentar propriedades bastante satisfatórias, pode ser vista como uma abordagem complementar às metodologias tradicionais em Análise de Sobrevivência, com a vantagem de permitir que as conclusões inferenciais sejam tomadas facilmente em relação aos tempos de sobrevivência propriamente ditos, e não em relação à taxa de riscos ou a uma função desse tempo. Além disso, em alguns casos, pode ser vista também como metodologia alternativa aos modelos clássicos quando as suposições destes são violadas ou quando os dados são heterogêneos. Apresentam-se nesta dissertação três técnicas para modelagem com regressão quantílica para dados censurados, que se diferenciam em relação às suas suposições e forma de estimação dos parâmetros. Um estudo de simulação para comparação das três técnicas para dados com distribuição normal, Weibull e log-logística é apresentado, em que são avaliados viés, erro padrão e erro quadrático médio. São discutidas as vantagens e desvantagens de cada uma das técnicas e uma delas é aplicada a um conjunto de dados reais do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo.
id USP_6a68832c4558155bd6dbbf95c585c9cf
oai_identifier_str oai:teses.usp.br:tde-09072017-141021
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Regressão quantílica para dados censuradosCensored quantile regressionAnálise de sobrevivênciaÁrvore de sobrevivênciaCensored dataDados censuradosEstimador de Kaplan-MeierKaplan-Meier estimatorKernelKernelQuantile regressionRegressão quantílicaSurvival analysisSurvival treeA regressão quantílica para dados censurados é uma extensão dos modelos de regressão quantílica que, por levar em consideração a informação das observações censuradas na modelagem, e por apresentar propriedades bastante satisfatórias, pode ser vista como uma abordagem complementar às metodologias tradicionais em Análise de Sobrevivência, com a vantagem de permitir que as conclusões inferenciais sejam tomadas facilmente em relação aos tempos de sobrevivência propriamente ditos, e não em relação à taxa de riscos ou a uma função desse tempo. Além disso, em alguns casos, pode ser vista também como metodologia alternativa aos modelos clássicos quando as suposições destes são violadas ou quando os dados são heterogêneos. Apresentam-se nesta dissertação três técnicas para modelagem com regressão quantílica para dados censurados, que se diferenciam em relação às suas suposições e forma de estimação dos parâmetros. Um estudo de simulação para comparação das três técnicas para dados com distribuição normal, Weibull e log-logística é apresentado, em que são avaliados viés, erro padrão e erro quadrático médio. São discutidas as vantagens e desvantagens de cada uma das técnicas e uma delas é aplicada a um conjunto de dados reais do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo.Censored quantile regression is an extension of quantile regression, and because it incorporates information from censored data in the modelling, and presents quite satisfactory properties, this class of models can be seen as a complementary approach to the traditional methods in Survival Analysis, with the advantage of allowing inferential conclusions to be made easily in terms of survival times rather than in terms of risk rates or as functions of survival time. Moreover, in some cases, it can also be seen as an alternative methodology to the classical models when their assumptions are violated or when modelling heterogeneity of the data. This dissertation presents three techniques for modelling censored quantile regression, which differ by assumptions and parameter estimation method. A simulation study designed with normal, Weibull and loglogistic distribution is presented to evaluate bias, standard error and mean square error. The advantages and disadvantages of each of the three techniques are then discussed and one of them is applied to a real data set from the Heart Institute of Hospital das Clínicas, University of São Paulo.Biblioteca Digitais de Teses e Dissertações da USPSilva, Gisela Tunes daRasteiro, Louise Rossi2017-05-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-09072017-141021/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T13:51:02Zoai:teses.usp.br:tde-09072017-141021Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T13:51:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Regressão quantílica para dados censurados
Censored quantile regression
title Regressão quantílica para dados censurados
spellingShingle Regressão quantílica para dados censurados
Rasteiro, Louise Rossi
Análise de sobrevivência
Árvore de sobrevivência
Censored data
Dados censurados
Estimador de Kaplan-Meier
Kaplan-Meier estimator
Kernel
Kernel
Quantile regression
Regressão quantílica
Survival analysis
Survival tree
title_short Regressão quantílica para dados censurados
title_full Regressão quantílica para dados censurados
title_fullStr Regressão quantílica para dados censurados
title_full_unstemmed Regressão quantílica para dados censurados
title_sort Regressão quantílica para dados censurados
author Rasteiro, Louise Rossi
author_facet Rasteiro, Louise Rossi
author_role author
dc.contributor.none.fl_str_mv Silva, Gisela Tunes da
dc.contributor.author.fl_str_mv Rasteiro, Louise Rossi
dc.subject.por.fl_str_mv Análise de sobrevivência
Árvore de sobrevivência
Censored data
Dados censurados
Estimador de Kaplan-Meier
Kaplan-Meier estimator
Kernel
Kernel
Quantile regression
Regressão quantílica
Survival analysis
Survival tree
topic Análise de sobrevivência
Árvore de sobrevivência
Censored data
Dados censurados
Estimador de Kaplan-Meier
Kaplan-Meier estimator
Kernel
Kernel
Quantile regression
Regressão quantílica
Survival analysis
Survival tree
description A regressão quantílica para dados censurados é uma extensão dos modelos de regressão quantílica que, por levar em consideração a informação das observações censuradas na modelagem, e por apresentar propriedades bastante satisfatórias, pode ser vista como uma abordagem complementar às metodologias tradicionais em Análise de Sobrevivência, com a vantagem de permitir que as conclusões inferenciais sejam tomadas facilmente em relação aos tempos de sobrevivência propriamente ditos, e não em relação à taxa de riscos ou a uma função desse tempo. Além disso, em alguns casos, pode ser vista também como metodologia alternativa aos modelos clássicos quando as suposições destes são violadas ou quando os dados são heterogêneos. Apresentam-se nesta dissertação três técnicas para modelagem com regressão quantílica para dados censurados, que se diferenciam em relação às suas suposições e forma de estimação dos parâmetros. Um estudo de simulação para comparação das três técnicas para dados com distribuição normal, Weibull e log-logística é apresentado, em que são avaliados viés, erro padrão e erro quadrático médio. São discutidas as vantagens e desvantagens de cada uma das técnicas e uma delas é aplicada a um conjunto de dados reais do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09072017-141021/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09072017-141021/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256835361341440