Markov Blanket discovery without causal sufficiency: application in credit data

Detalhes bibliográficos
Autor(a) principal: Jeronymo, Pedro Virgilio Basílio
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-19012022-113726/
Resumo: Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An important class of feature selectors are Markov Blanket (MB) learning algorithms. They are Causal Discovery algorithms that learn the local causal structure of a target variable. A common assumption in their theoretical basis, yet often violated in practice, is causal sufficiency. The M3B algorithm was proposed as the first to directly learn the MB without demanding causal sufficiency. The main drawback of M3B is that it is time inefficient, being intractable for high-dimensional inputs. Intending a faster method, we derive the Fast Markov Blanket Discovery Algorithm (FMMB). Empirical results that compare FMMB to M3B on the structural learning task show that FMMB outperforms M3B in terms of time efficiency, while preserving structural accuracy given a large enough sample size. Moreover, we introduce a new technique to aggregate bootstrapped MB structures, that first extracts a consensus MB, than constructs the aggregated structure as the union of the most probable path between each feature in the MB and the target. Comparisons with the state of the art shows that the proposed aggregation has a smaller loss of information. The analysis was conducted by using Credit-related data, with special focus on Peer-to-Peer lending platforms. Our results validate the credit scoring models used by these platforms as effective in identifying bad borrowers, yet still have room for improvement. Finally, we propose an ensemble of Bayesian Network Classifiers trained using the Cross-Entropy method. The ensemble performs better in credit scoring than Logistic Regression and Random Forests in the selected datasets.
id USP_6a79bdd09c27503f01e397f6597af1c6
oai_identifier_str oai:teses.usp.br:tde-19012022-113726
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Markov Blanket discovery without causal sufficiency: application in credit dataDescoberta de Markov Blankets sem suficiência causal: aplicação em dados de créditoMarkov BlanketBayesian networksCausal discoveryCreditCréditoDescoberta causalMarkov BlanketRedes BayesianasFaster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An important class of feature selectors are Markov Blanket (MB) learning algorithms. They are Causal Discovery algorithms that learn the local causal structure of a target variable. A common assumption in their theoretical basis, yet often violated in practice, is causal sufficiency. The M3B algorithm was proposed as the first to directly learn the MB without demanding causal sufficiency. The main drawback of M3B is that it is time inefficient, being intractable for high-dimensional inputs. Intending a faster method, we derive the Fast Markov Blanket Discovery Algorithm (FMMB). Empirical results that compare FMMB to M3B on the structural learning task show that FMMB outperforms M3B in terms of time efficiency, while preserving structural accuracy given a large enough sample size. Moreover, we introduce a new technique to aggregate bootstrapped MB structures, that first extracts a consensus MB, than constructs the aggregated structure as the union of the most probable path between each feature in the MB and the target. Comparisons with the state of the art shows that the proposed aggregation has a smaller loss of information. The analysis was conducted by using Credit-related data, with special focus on Peer-to-Peer lending platforms. Our results validate the credit scoring models used by these platforms as effective in identifying bad borrowers, yet still have room for improvement. Finally, we propose an ensemble of Bayesian Network Classifiers trained using the Cross-Entropy method. The ensemble performs better in credit scoring than Logistic Regression and Random Forests in the selected datasets.Seleção de features com maior velocidade se torna uma necessidade conforme Big Data dita o zeitgeist. Uma classe importante de seletores de features são algoritmos de descoberta de Markov Blanket (MB).São algoritmos de descoberta causal que aprendem a estrutura causal local de uma variável alvo. Uma suposição comum em sua base teórica, frequentemente violada na prática, é a de suficiência causal: a crença de que todas as causas em comum das variáveis que foram medidas, compondo o conjunto de dados, também estão no conjunto de dados. Recentemente, o algoritmo M3B foi proposto. É o primeiro a aprender diretamente o MB sem demandar suficiência causal. A maior desvantagem do M3B é sua ineficiência de tempo, sendo intratável para entradas muito grandes. Aqui, nós derivamos o Fast Markov Blanket Discovery Algorithm (FMMB). Resultados empíricos comparando o FMMB com o M3B em termos de aprendizado estrutural mostram que o FMMB tem melhor desempenho em termos de tempo, enquanto preservando a acurácia da estrutura causal dado um tamanho amostral grande o suficiente. Além disso, nós introduzimos uma nova técnica para agregar resultados de estruturas de MB que advém de bootstrap, que primeiro extrai um consenso de qual é o MB, então constrói a estrutura agregada como a união do caminho mais provável entre o alvo e as features que compõem o MB. Comparações com o estado da arte mostram que a agregação proposta perde menos informação. As analises foram conduzidas usando dados de crédito, com atenção especial à plataformas de empréstimos interpessoais. Nossos resultados validam os modelos de crédito usados por essas plataformas como efetivos na identificação de maus pagadores. Por fim, propomos um ensemble de Classificadores Baseados em Redes Bayesianas treinado usando o Método da Entropia Cruzada. O ensemble performou melhor em Credit Scoring do que Regressão Linear e Random Forests nos conjuntos de dados selecionados.Biblioteca Digitais de Teses e Dissertações da USPMaciel, Carlos DiasJeronymo, Pedro Virgilio Basílio2021-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-19012022-113726/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-02-07T15:28:02Zoai:teses.usp.br:tde-19012022-113726Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-02-07T15:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Markov Blanket discovery without causal sufficiency: application in credit data
Descoberta de Markov Blankets sem suficiência causal: aplicação em dados de crédito
title Markov Blanket discovery without causal sufficiency: application in credit data
spellingShingle Markov Blanket discovery without causal sufficiency: application in credit data
Jeronymo, Pedro Virgilio Basílio
Markov Blanket
Bayesian networks
Causal discovery
Credit
Crédito
Descoberta causal
Markov Blanket
Redes Bayesianas
title_short Markov Blanket discovery without causal sufficiency: application in credit data
title_full Markov Blanket discovery without causal sufficiency: application in credit data
title_fullStr Markov Blanket discovery without causal sufficiency: application in credit data
title_full_unstemmed Markov Blanket discovery without causal sufficiency: application in credit data
title_sort Markov Blanket discovery without causal sufficiency: application in credit data
author Jeronymo, Pedro Virgilio Basílio
author_facet Jeronymo, Pedro Virgilio Basílio
author_role author
dc.contributor.none.fl_str_mv Maciel, Carlos Dias
dc.contributor.author.fl_str_mv Jeronymo, Pedro Virgilio Basílio
dc.subject.por.fl_str_mv Markov Blanket
Bayesian networks
Causal discovery
Credit
Crédito
Descoberta causal
Markov Blanket
Redes Bayesianas
topic Markov Blanket
Bayesian networks
Causal discovery
Credit
Crédito
Descoberta causal
Markov Blanket
Redes Bayesianas
description Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An important class of feature selectors are Markov Blanket (MB) learning algorithms. They are Causal Discovery algorithms that learn the local causal structure of a target variable. A common assumption in their theoretical basis, yet often violated in practice, is causal sufficiency. The M3B algorithm was proposed as the first to directly learn the MB without demanding causal sufficiency. The main drawback of M3B is that it is time inefficient, being intractable for high-dimensional inputs. Intending a faster method, we derive the Fast Markov Blanket Discovery Algorithm (FMMB). Empirical results that compare FMMB to M3B on the structural learning task show that FMMB outperforms M3B in terms of time efficiency, while preserving structural accuracy given a large enough sample size. Moreover, we introduce a new technique to aggregate bootstrapped MB structures, that first extracts a consensus MB, than constructs the aggregated structure as the union of the most probable path between each feature in the MB and the target. Comparisons with the state of the art shows that the proposed aggregation has a smaller loss of information. The analysis was conducted by using Credit-related data, with special focus on Peer-to-Peer lending platforms. Our results validate the credit scoring models used by these platforms as effective in identifying bad borrowers, yet still have room for improvement. Finally, we propose an ensemble of Bayesian Network Classifiers trained using the Cross-Entropy method. The ensemble performs better in credit scoring than Logistic Regression and Random Forests in the selected datasets.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-19012022-113726/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-19012022-113726/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257124131831808