Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-09052024-072213/ |
Resumo: | Phosphorus, an essential nutrient for life and crucial for agriculture, is extracted from nonrenewable mineral reserves, raising concerns about sustainability. Therefore, mapping soil phosphorus stocks is vital for the efficient management of this resource and for the sustainability of the planet. However, mapping these stocks over large areas and at a high level of detail is not an easy task. Fortunately, new digital soil mapping (DSM) methodologies can contribute to obtaining increasingly accurate maps. The central hypothesis of this thesis is that the use of geotechnologies can contribute to the mapping of P stocks in Brazil, with high accuracy. This thesis was divided into two articles. The first aimed to map the main oxides of the soil clay fraction, which are closely related to P stocks. These maps were used as predictive covariates of P stocks in the second chapter, whose main objective was to map the stocks of total phosphorus (TP) and available phosphorus (AP) in Brazil. To map the main oxides of the clay fraction, we used a modeling dataset with 5,330 observations. Six spectral variables obtained from the Landsat historical series and seven terrain attributes derived from a digital elevation model were used to determine Fe2O3, Al2O3, and SiO2 using the Random Forest algorithm. The best predictions were observed for Fe2O3 in the superficial layer (RMSE = 47.0, RPIQ = 1.85, and R2 = 0.65), while the lowest predictions were for SiO2 in the underground layer (RMSE = 66.7, RPIQ = 1.55, and R2 = 0.19). The maps of the oxides in the 0-20 cm layer were used in predicting P stocks. In addition to these oxides, we included environmental covariates related to soil formation processes, such as relief, climate, and organisms, and other attributes, such as, for example, soil organic carbon and clay. We divided Brazil into two sub-regions, representing areas with native coverage and areas with anthropic coverage. From this, we built independent predictive models for each sub-region. In total, 28,572 samples for AP and 3,154 for TP were used in modeling. Our results showed that Brazil has a TP stock of 531 Mt and an AP stock of 17.4 Mt. The highest averages of TP stocks are in the Atlantic Forest biome (73.8 g/m²), which may be linked to the higher stocks of soil organic carbon in this biome. The highest average AP stocks are in the Caatinga biome (2.51 g/m²) for presenting younger soils and with low phosphorus adsorption capacity. We also found that the use of fertilizers significantly increased AP stocks, where agricultural areas always had higher AP stocks than native areas. The proposed approach was able to quantify Brazils\' P stocks with spatial distribution aligned with the understanding of Brazilian soils. In addition, it was possible to map the entire Brazilian territory for the first time with a scale of 30m. |
id |
USP_6d7ecd77499a61a4536fe764a20e9b86 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09052024-072213 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agricultureMapeamento de alta resolução dos estoques de fósforo nos solos brasileiros por meio de geotecnologias: implicações para uma agricultura sustentávelAprendizagem de máquinaDigital Soil MappingMachine LearningMapeamento digital de solosRemote SensingSensoriamento remotoSolos tropicaisTropical SoilsPhosphorus, an essential nutrient for life and crucial for agriculture, is extracted from nonrenewable mineral reserves, raising concerns about sustainability. Therefore, mapping soil phosphorus stocks is vital for the efficient management of this resource and for the sustainability of the planet. However, mapping these stocks over large areas and at a high level of detail is not an easy task. Fortunately, new digital soil mapping (DSM) methodologies can contribute to obtaining increasingly accurate maps. The central hypothesis of this thesis is that the use of geotechnologies can contribute to the mapping of P stocks in Brazil, with high accuracy. This thesis was divided into two articles. The first aimed to map the main oxides of the soil clay fraction, which are closely related to P stocks. These maps were used as predictive covariates of P stocks in the second chapter, whose main objective was to map the stocks of total phosphorus (TP) and available phosphorus (AP) in Brazil. To map the main oxides of the clay fraction, we used a modeling dataset with 5,330 observations. Six spectral variables obtained from the Landsat historical series and seven terrain attributes derived from a digital elevation model were used to determine Fe2O3, Al2O3, and SiO2 using the Random Forest algorithm. The best predictions were observed for Fe2O3 in the superficial layer (RMSE = 47.0, RPIQ = 1.85, and R2 = 0.65), while the lowest predictions were for SiO2 in the underground layer (RMSE = 66.7, RPIQ = 1.55, and R2 = 0.19). The maps of the oxides in the 0-20 cm layer were used in predicting P stocks. In addition to these oxides, we included environmental covariates related to soil formation processes, such as relief, climate, and organisms, and other attributes, such as, for example, soil organic carbon and clay. We divided Brazil into two sub-regions, representing areas with native coverage and areas with anthropic coverage. From this, we built independent predictive models for each sub-region. In total, 28,572 samples for AP and 3,154 for TP were used in modeling. Our results showed that Brazil has a TP stock of 531 Mt and an AP stock of 17.4 Mt. The highest averages of TP stocks are in the Atlantic Forest biome (73.8 g/m²), which may be linked to the higher stocks of soil organic carbon in this biome. The highest average AP stocks are in the Caatinga biome (2.51 g/m²) for presenting younger soils and with low phosphorus adsorption capacity. We also found that the use of fertilizers significantly increased AP stocks, where agricultural areas always had higher AP stocks than native areas. The proposed approach was able to quantify Brazils\' P stocks with spatial distribution aligned with the understanding of Brazilian soils. In addition, it was possible to map the entire Brazilian territory for the first time with a scale of 30m.O fósforo, um nutriente essencial para a vida e crucial para a agricultura, é extraído de reservas minerais não renováveis, levantando preocupações sobre a sustentabilidade. Portanto, o mapeamento dos estoques de fósforo no solo é vital para a gestão eficiente desse recurso e para a sustentabilidade do planeta. Entretanto, mapear esses estoques em grandes áreas e alto nível de detalhes não é uma tarefa fácil. Felizmente, novas metodologias de mapeamento digital de solo (MDS) podem contribuir para a obtenção de mapas cada vez mais precisos. A hipótese central desta tese é que o uso de geotecnologias pode contribuir para o mapeamento dos estoques de P no Brasil, com elevada precisão. Esta tese foi dividida em dois artigos. O primeiro teve como objetivo mapear os principais óxidos da fração argila do solo, que estão intimamente relacionados aos estoques de P. Esses mapas foram utilizados como covariáveis preditoras dos estoques de P no segundo capítulo, cujo objetivo principal foi mapear os estoques de fósforo total (PT) e fósforo disponível (PD) no Brasil. Para mapear os principais óxidos da fração argila, usamos um conjunto de dados de modelagem com 5.330 observações. Seis variáveis espectrais obtidas da série histórica Landsat e sete atributos do terreno derivados de um modelo digital de elevação foram utilizados para determinar Fe2O3, Al2O3 e SiO2 usando o algoritmo Random Forest. As melhores previsões foram observadas para Fe2O3 na camada superficial (RMSE = 47,0, RPIQ = 1,85 e R2 = 0,65), enquanto as menores previsões foram para SiO2 na camada subterrânea (RMSE = 66,7, RPIQ = 1,55 e R2 = 0,19). Os mapas dos óxidos na camada de 0-20 cm foram usados na predição dos estoques de P. Além desses óxidos, incluímos covariáveis ambientais relacionadas aos processos de formação do solo, como relevo, clima e organismos, e outros atributos, como por exemplo, carbono orgânico do solo e argila. Dividimos o Brasil em duas sub-regiões, representando áreas com cobertura nativa e áreas com cobertura antrópica. A partir disso, construímos modelos preditivos independentes para cada sub-região. Ao todo, 28.572 amostras para PD e 3.154 para PT foram usadas na modelagem. Nossos resultados mostraram que o Brasil possui um estoque de TP de 531 Mt e um estoque de AP de 17,4 Mt. As maiores médias de estoques de TP estão no bioma Mata Atlântica (73,8 g/m²), o que pode estar ligado aos maiores estoques de carbono orgânico no solo deste bioma. Os maiores estoques médios de AP estão no bioma Caatinga (2,51 g/m²) por apresentar solos mais jovens e com baixa capacidade de adsorção de fósforo. Descobrimos também que o uso de fertilizantes aumentou significativamente os estoques de AP, onde as áreas agrícolas sempre tiveram estoques de AP mais elevados do que as áreas nativas. A abordagem proposta foi capaz de quantificar os estoques de P do Brasil com distribuição espacial alinhada ao entendimento dos solos brasileiros. Além disso, foi possível mapear de forma inédita todo o território brasileiro com uma escala de 30m.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloRosas, Jorge Tadeu Fim2024-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-09052024-072213/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-10T13:12:02Zoai:teses.usp.br:tde-09052024-072213Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-10T13:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture Mapeamento de alta resolução dos estoques de fósforo nos solos brasileiros por meio de geotecnologias: implicações para uma agricultura sustentável |
title |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
spellingShingle |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture Rosas, Jorge Tadeu Fim Aprendizagem de máquina Digital Soil Mapping Machine Learning Mapeamento digital de solos Remote Sensing Sensoriamento remoto Solos tropicais Tropical Soils |
title_short |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
title_full |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
title_fullStr |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
title_full_unstemmed |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
title_sort |
Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: implications for a sustainable agriculture |
author |
Rosas, Jorge Tadeu Fim |
author_facet |
Rosas, Jorge Tadeu Fim |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
dc.contributor.author.fl_str_mv |
Rosas, Jorge Tadeu Fim |
dc.subject.por.fl_str_mv |
Aprendizagem de máquina Digital Soil Mapping Machine Learning Mapeamento digital de solos Remote Sensing Sensoriamento remoto Solos tropicais Tropical Soils |
topic |
Aprendizagem de máquina Digital Soil Mapping Machine Learning Mapeamento digital de solos Remote Sensing Sensoriamento remoto Solos tropicais Tropical Soils |
description |
Phosphorus, an essential nutrient for life and crucial for agriculture, is extracted from nonrenewable mineral reserves, raising concerns about sustainability. Therefore, mapping soil phosphorus stocks is vital for the efficient management of this resource and for the sustainability of the planet. However, mapping these stocks over large areas and at a high level of detail is not an easy task. Fortunately, new digital soil mapping (DSM) methodologies can contribute to obtaining increasingly accurate maps. The central hypothesis of this thesis is that the use of geotechnologies can contribute to the mapping of P stocks in Brazil, with high accuracy. This thesis was divided into two articles. The first aimed to map the main oxides of the soil clay fraction, which are closely related to P stocks. These maps were used as predictive covariates of P stocks in the second chapter, whose main objective was to map the stocks of total phosphorus (TP) and available phosphorus (AP) in Brazil. To map the main oxides of the clay fraction, we used a modeling dataset with 5,330 observations. Six spectral variables obtained from the Landsat historical series and seven terrain attributes derived from a digital elevation model were used to determine Fe2O3, Al2O3, and SiO2 using the Random Forest algorithm. The best predictions were observed for Fe2O3 in the superficial layer (RMSE = 47.0, RPIQ = 1.85, and R2 = 0.65), while the lowest predictions were for SiO2 in the underground layer (RMSE = 66.7, RPIQ = 1.55, and R2 = 0.19). The maps of the oxides in the 0-20 cm layer were used in predicting P stocks. In addition to these oxides, we included environmental covariates related to soil formation processes, such as relief, climate, and organisms, and other attributes, such as, for example, soil organic carbon and clay. We divided Brazil into two sub-regions, representing areas with native coverage and areas with anthropic coverage. From this, we built independent predictive models for each sub-region. In total, 28,572 samples for AP and 3,154 for TP were used in modeling. Our results showed that Brazil has a TP stock of 531 Mt and an AP stock of 17.4 Mt. The highest averages of TP stocks are in the Atlantic Forest biome (73.8 g/m²), which may be linked to the higher stocks of soil organic carbon in this biome. The highest average AP stocks are in the Caatinga biome (2.51 g/m²) for presenting younger soils and with low phosphorus adsorption capacity. We also found that the use of fertilizers significantly increased AP stocks, where agricultural areas always had higher AP stocks than native areas. The proposed approach was able to quantify Brazils\' P stocks with spatial distribution aligned with the understanding of Brazilian soils. In addition, it was possible to map the entire Brazilian territory for the first time with a scale of 30m. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-09052024-072213/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-09052024-072213/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256832853147648 |