Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/43/43134/tde-24052022-130200/ |
Resumo: | Nesta tese de doutorado investigamos diferentes aspectos acerca de transições de fase no modelo irreversível/fora do equilíbrio mais simples com simetria com inversão Z_2 \"up-down\": o modelo do votante majoritário (MVM) [J.Stat.Phys. 66, 273(1992)], caracterizado originalmente por uma transição de fase ordem-desordem contínua, tanto em redes regulares quanto em redes complexas. Começamos pela análise sobre a existência de ingredientes mínimos para a ocorrência de transições de fase descontínuas no modelo do votante majoritário. Analisamos o papel da inércia, conectividade da rede (número de vizinhos) e topologia da rede (regulares e complexas). Em seguida desenvolvemos uma nova teoria de campo médio, alternativa aquela considerada em [Phys. Rev. E 95, 042304(2017)], considerando agora uma vizinhança arbitrária e exemplificamos numa variante do modelo majoritário caracterizado pela presença de um ruído extra. Ao contrário de modelos similares, a presença de um ruído extra não altera a ordem da transição, independentemente da topologia da rede. Finalmente o efeito da desordem temporal em transições descontínuas de sistemas com simetria de inversão também foi investigado, estendendo e generalizando para outros parâmetros de controle e outras simetrias os resultados de [Phys. Rev. E 98, 032518(2018)] para transições com estados absorventes. |
id |
USP_6d97576bc6c8102a4571ab51a79cede1 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24052022-130200 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexasGeneral aspects about nonequlibrium phase transitions in systems with inversion symmetry: a study in regular and complex networksaproximação de campo médiodesordem temporalMajority vote modelmean field approachModelo do votante majoritáriophase transitionsredes regulares e complexasregular and complex networkstemporal disordertransições de faseNesta tese de doutorado investigamos diferentes aspectos acerca de transições de fase no modelo irreversível/fora do equilíbrio mais simples com simetria com inversão Z_2 \"up-down\": o modelo do votante majoritário (MVM) [J.Stat.Phys. 66, 273(1992)], caracterizado originalmente por uma transição de fase ordem-desordem contínua, tanto em redes regulares quanto em redes complexas. Começamos pela análise sobre a existência de ingredientes mínimos para a ocorrência de transições de fase descontínuas no modelo do votante majoritário. Analisamos o papel da inércia, conectividade da rede (número de vizinhos) e topologia da rede (regulares e complexas). Em seguida desenvolvemos uma nova teoria de campo médio, alternativa aquela considerada em [Phys. Rev. E 95, 042304(2017)], considerando agora uma vizinhança arbitrária e exemplificamos numa variante do modelo majoritário caracterizado pela presença de um ruído extra. Ao contrário de modelos similares, a presença de um ruído extra não altera a ordem da transição, independentemente da topologia da rede. Finalmente o efeito da desordem temporal em transições descontínuas de sistemas com simetria de inversão também foi investigado, estendendo e generalizando para outros parâmetros de controle e outras simetrias os resultados de [Phys. Rev. E 98, 032518(2018)] para transições com estados absorventes.In this PHD thesis, distinct aspects about the majority vote model (MVM) [J.Stat.Phys. 66, 273(1992)], one of the simplest nonequilibrium models with Z_2 up-down symmetry was considered. In the first analysis, we tackle our study about existence of fundamental ingredients for discontinuous phase transitions in the MVM. The role of inertia, neighborhood and lattice topology was investigated. Second, we proposed a new mean-field approach (MFA) alternative to the one in [Phys. Rev. E 95, 042304(2017)] for the MVM by taking into account a general neighnorhood and we exemplified it in a modified version in which an extra noise is present. Unlike allied models, such extra noise does not shift the continuous phase transition to a discontinuous one. Finally, the effect of temporal disorder was carefully investigated, in order to extend for other control parameters as well as to confirm the findings from [Phys. Rev. E 98, 032518(2018)] for systems with other symmetries beyond absorbing phase transitions.Biblioteca Digitais de Teses e Dissertações da USPSantos, Carlos Eduardo Fiore dosRiveros, Jesus Mauricio Encinas2021-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-24052022-130200/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-05-26T10:59:31Zoai:teses.usp.br:tde-24052022-130200Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-26T10:59:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas General aspects about nonequlibrium phase transitions in systems with inversion symmetry: a study in regular and complex networks |
title |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
spellingShingle |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas Riveros, Jesus Mauricio Encinas aproximação de campo médio desordem temporal Majority vote model mean field approach Modelo do votante majoritário phase transitions redes regulares e complexas regular and complex networks temporal disorder transições de fase |
title_short |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
title_full |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
title_fullStr |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
title_full_unstemmed |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
title_sort |
Aspectos gerais sobre transições de fase fora do equilíbrio em sistemas com simetria de inversão: estudo em redes regulares e complexas |
author |
Riveros, Jesus Mauricio Encinas |
author_facet |
Riveros, Jesus Mauricio Encinas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Carlos Eduardo Fiore dos |
dc.contributor.author.fl_str_mv |
Riveros, Jesus Mauricio Encinas |
dc.subject.por.fl_str_mv |
aproximação de campo médio desordem temporal Majority vote model mean field approach Modelo do votante majoritário phase transitions redes regulares e complexas regular and complex networks temporal disorder transições de fase |
topic |
aproximação de campo médio desordem temporal Majority vote model mean field approach Modelo do votante majoritário phase transitions redes regulares e complexas regular and complex networks temporal disorder transições de fase |
description |
Nesta tese de doutorado investigamos diferentes aspectos acerca de transições de fase no modelo irreversível/fora do equilíbrio mais simples com simetria com inversão Z_2 \"up-down\": o modelo do votante majoritário (MVM) [J.Stat.Phys. 66, 273(1992)], caracterizado originalmente por uma transição de fase ordem-desordem contínua, tanto em redes regulares quanto em redes complexas. Começamos pela análise sobre a existência de ingredientes mínimos para a ocorrência de transições de fase descontínuas no modelo do votante majoritário. Analisamos o papel da inércia, conectividade da rede (número de vizinhos) e topologia da rede (regulares e complexas). Em seguida desenvolvemos uma nova teoria de campo médio, alternativa aquela considerada em [Phys. Rev. E 95, 042304(2017)], considerando agora uma vizinhança arbitrária e exemplificamos numa variante do modelo majoritário caracterizado pela presença de um ruído extra. Ao contrário de modelos similares, a presença de um ruído extra não altera a ordem da transição, independentemente da topologia da rede. Finalmente o efeito da desordem temporal em transições descontínuas de sistemas com simetria de inversão também foi investigado, estendendo e generalizando para outros parâmetros de controle e outras simetrias os resultados de [Phys. Rev. E 98, 032518(2018)] para transições com estados absorventes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-24052022-130200/ |
url |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-24052022-130200/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257305149603840 |