Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting

Detalhes bibliográficos
Autor(a) principal: Miranda, Aldicio José
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17062009-162605/
Resumo: O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições de Whitney equisingularidade ou trivialidade topollógica para germes de aplicações f : (\'C POT.n+3\' ,0) \'SETA\' (\'C POT.3\',0). São obtidas relações entre os invariantes sem considerar a hipótese de que o germe tenha co-posto 1 e o desdobramento ser excelente, generalizando os resultados obtidos por Jorge Pèrez para germes f : (\'C POT.3\' ,0) \' SETA\' !(\'C POT.3\' ,0) de co-posto 1. Outro problema interessante em teoria de singularidades é encontrar fórmulas para calcular invariantes 0-estáveis que podem surgir no discriminante de uma deformaçãao estável de um germe finitamente determinado. Neste contexto são desenvolvidos métodos de contagem dos invariantes 0-estáveis a partir dos ideais de Fitting associados ao conjunto discriminante de f . Por último, implementamos um algoritmo no software Maple, para determinar a matriz de uma apresentação do \'O IND.m\' módulo finitamente gerado \'O IND.SIGMA( f ). Desta matriz, podemos obter os ideais de definição de todos os conjuntos de pontos múltiplos de f . Além disto apresentamos uma aplicação deste algoritmo no cálculo do número de pontos múltiplos em germes finitamente determinados de \'C POT.2\' em \'C POT.2\'
id USP_6dacb0be75914ba2935dad673f04ad7b
oai_identifier_str oai:teses.usp.br:tde-17062009-162605
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de FittingInvariantes of map germs from \'C POT. n+m\' to \'C POT. m\' and Fitting idealsFitting idealsIdeais de FittingInvariantesInvariantsWhitney equisingularidadesWhitney equisingularityO primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições de Whitney equisingularidade ou trivialidade topollógica para germes de aplicações f : (\'C POT.n+3\' ,0) \'SETA\' (\'C POT.3\',0). São obtidas relações entre os invariantes sem considerar a hipótese de que o germe tenha co-posto 1 e o desdobramento ser excelente, generalizando os resultados obtidos por Jorge Pèrez para germes f : (\'C POT.3\' ,0) \' SETA\' !(\'C POT.3\' ,0) de co-posto 1. Outro problema interessante em teoria de singularidades é encontrar fórmulas para calcular invariantes 0-estáveis que podem surgir no discriminante de uma deformaçãao estável de um germe finitamente determinado. Neste contexto são desenvolvidos métodos de contagem dos invariantes 0-estáveis a partir dos ideais de Fitting associados ao conjunto discriminante de f . Por último, implementamos um algoritmo no software Maple, para determinar a matriz de uma apresentação do \'O IND.m\' módulo finitamente gerado \'O IND.SIGMA( f ). Desta matriz, podemos obter os ideais de definição de todos os conjuntos de pontos múltiplos de f . Além disto apresentamos uma aplicação deste algoritmo no cálculo do número de pontos múltiplos em germes finitamente determinados de \'C POT.2\' em \'C POT.2\'In the first of this work we study the necessary invariants to give conditions for the Whitney equissingularity or the topological triviality in families of map germs f : (\'C POT. n+3\', 0) \'ARROW\' (\'C POT.3\' ,0). We obtain relations between these invariants without the hypothesis of the germ to be of co-rank 1 and the unfolding to be excelent. We generalize the results given by Jorge Perez in the case co-rank one map germs f : (\'C POIT.3\', 0)!(\'C POT.3\' ,0). Other interesting problem in Singularity Theory is to find formulae which allow us to count the 0-stable singularities which appear in the discriminant of a stable deformation of a finitely determibed germ. In this context are developed methods of calculation of invariant 0-stable from the ideals of fitting associated with the discriminant set of f . Last, but not least we implement an algorithm using Maple to obtain the representation matrix of the finitely generated \'O IND.m\' module \'O IND. SIGMA\'( f ). From this matrix we obtain all Fitting ideals related with the multiple points. Moreover we show how to apply this algorithm to obtain the multiple points of finitely determined map germs f : (\'C POT.2\' ,0) \'ARROW\' (\'C POT.2\', 0)Biblioteca Digitais de Teses e Dissertações da USPPérez, Victor Hugo JorgeSaia, Marcelo JoséMiranda, Aldicio José2009-04-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-17062009-162605/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-17062009-162605Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
Invariantes of map germs from \'C POT. n+m\' to \'C POT. m\' and Fitting ideals
title Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
spellingShingle Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
Miranda, Aldicio José
Fitting ideals
Ideais de Fitting
Invariantes
Invariants
Whitney equisingularidades
Whitney equisingularity
title_short Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
title_full Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
title_fullStr Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
title_full_unstemmed Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
title_sort Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting
author Miranda, Aldicio José
author_facet Miranda, Aldicio José
author_role author
dc.contributor.none.fl_str_mv Pérez, Victor Hugo Jorge
Saia, Marcelo José
dc.contributor.author.fl_str_mv Miranda, Aldicio José
dc.subject.por.fl_str_mv Fitting ideals
Ideais de Fitting
Invariantes
Invariants
Whitney equisingularidades
Whitney equisingularity
topic Fitting ideals
Ideais de Fitting
Invariantes
Invariants
Whitney equisingularidades
Whitney equisingularity
description O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições de Whitney equisingularidade ou trivialidade topollógica para germes de aplicações f : (\'C POT.n+3\' ,0) \'SETA\' (\'C POT.3\',0). São obtidas relações entre os invariantes sem considerar a hipótese de que o germe tenha co-posto 1 e o desdobramento ser excelente, generalizando os resultados obtidos por Jorge Pèrez para germes f : (\'C POT.3\' ,0) \' SETA\' !(\'C POT.3\' ,0) de co-posto 1. Outro problema interessante em teoria de singularidades é encontrar fórmulas para calcular invariantes 0-estáveis que podem surgir no discriminante de uma deformaçãao estável de um germe finitamente determinado. Neste contexto são desenvolvidos métodos de contagem dos invariantes 0-estáveis a partir dos ideais de Fitting associados ao conjunto discriminante de f . Por último, implementamos um algoritmo no software Maple, para determinar a matriz de uma apresentação do \'O IND.m\' módulo finitamente gerado \'O IND.SIGMA( f ). Desta matriz, podemos obter os ideais de definição de todos os conjuntos de pontos múltiplos de f . Além disto apresentamos uma aplicação deste algoritmo no cálculo do número de pontos múltiplos em germes finitamente determinados de \'C POT.2\' em \'C POT.2\'
publishDate 2009
dc.date.none.fl_str_mv 2009-04-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17062009-162605/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17062009-162605/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090799706570752