Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3

Detalhes bibliográficos
Autor(a) principal: Pérez, Victor H. Jorge
Data de Publicação: 2007
Outros Autores: Rizziolli, Eliris C. [UNESP], Saia, Marcelo J.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-7643-7776-2_19
http://hdl.handle.net/11449/220646
Resumo: We study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3.
id UNSP_ee40991ad368f293ff8447f67cb5b7db
oai_identifier_str oai:repositorio.unesp.br:11449/220646
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3Euler obstructionPolar multiplicitiesStable invariantsWhitney equisingularityWe study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3.Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, Caixa Postal 668Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio Mesquita Filho Campus de Rio Claro, Caixa Postal 178Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio Mesquita Filho Campus de Rio Claro, Caixa Postal 178Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Pérez, Victor H. JorgeRizziolli, Eliris C. [UNESP]Saia, Marcelo J.2022-04-28T19:03:54Z2022-04-28T19:03:54Z2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject263-287http://dx.doi.org/10.1007/978-3-7643-7776-2_19Trends in Mathematics, v. 39, p. 263-287.2297-024X2297-0215http://hdl.handle.net/11449/22064610.1007/978-3-7643-7776-2_192-s2.0-84975749021Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTrends in Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:03:54Zoai:repositorio.unesp.br:11449/220646Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:42:53.677383Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
title Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
spellingShingle Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
Pérez, Victor H. Jorge
Euler obstruction
Polar multiplicities
Stable invariants
Whitney equisingularity
title_short Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
title_full Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
title_fullStr Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
title_full_unstemmed Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
title_sort Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
author Pérez, Victor H. Jorge
author_facet Pérez, Victor H. Jorge
Rizziolli, Eliris C. [UNESP]
Saia, Marcelo J.
author_role author
author2 Rizziolli, Eliris C. [UNESP]
Saia, Marcelo J.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Pérez, Victor H. Jorge
Rizziolli, Eliris C. [UNESP]
Saia, Marcelo J.
dc.subject.por.fl_str_mv Euler obstruction
Polar multiplicities
Stable invariants
Whitney equisingularity
topic Euler obstruction
Polar multiplicities
Stable invariants
Whitney equisingularity
description We study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
2022-04-28T19:03:54Z
2022-04-28T19:03:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-7643-7776-2_19
Trends in Mathematics, v. 39, p. 263-287.
2297-024X
2297-0215
http://hdl.handle.net/11449/220646
10.1007/978-3-7643-7776-2_19
2-s2.0-84975749021
url http://dx.doi.org/10.1007/978-3-7643-7776-2_19
http://hdl.handle.net/11449/220646
identifier_str_mv Trends in Mathematics, v. 39, p. 263-287.
2297-024X
2297-0215
10.1007/978-3-7643-7776-2_19
2-s2.0-84975749021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Trends in Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 263-287
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128553541173248