Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-7643-7776-2_19 http://hdl.handle.net/11449/220646 |
Resumo: | We study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3. |
id |
UNSP_ee40991ad368f293ff8447f67cb5b7db |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220646 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3Euler obstructionPolar multiplicitiesStable invariantsWhitney equisingularityWe study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3.Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, Caixa Postal 668Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio Mesquita Filho Campus de Rio Claro, Caixa Postal 178Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio Mesquita Filho Campus de Rio Claro, Caixa Postal 178Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Pérez, Victor H. JorgeRizziolli, Eliris C. [UNESP]Saia, Marcelo J.2022-04-28T19:03:54Z2022-04-28T19:03:54Z2007-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject263-287http://dx.doi.org/10.1007/978-3-7643-7776-2_19Trends in Mathematics, v. 39, p. 263-287.2297-024X2297-0215http://hdl.handle.net/11449/22064610.1007/978-3-7643-7776-2_192-s2.0-84975749021Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTrends in Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:03:54Zoai:repositorio.unesp.br:11449/220646Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:42:53.677383Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
title |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
spellingShingle |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 Pérez, Victor H. Jorge Euler obstruction Polar multiplicities Stable invariants Whitney equisingularity |
title_short |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
title_full |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
title_fullStr |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
title_full_unstemmed |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
title_sort |
Whitney equisingularity, euler obstruction and invariants of map germs from Cn to C3, n > 3 |
author |
Pérez, Victor H. Jorge |
author_facet |
Pérez, Victor H. Jorge Rizziolli, Eliris C. [UNESP] Saia, Marcelo J. |
author_role |
author |
author2 |
Rizziolli, Eliris C. [UNESP] Saia, Marcelo J. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Pérez, Victor H. Jorge Rizziolli, Eliris C. [UNESP] Saia, Marcelo J. |
dc.subject.por.fl_str_mv |
Euler obstruction Polar multiplicities Stable invariants Whitney equisingularity |
topic |
Euler obstruction Polar multiplicities Stable invariants Whitney equisingularity |
description |
We study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of any finitely determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney showed in [3] that the invariants for the Whitney equisingularity are the 0- stable invariants and the polar multiplicities of the stable types of the germ. First we describe all stable types which appear in these dimensions. Then we find relationships between the polar multiplicities of the stable types in the singular set and also in the discriminant. When n > 3, for any germ f there is an hypersurface in Cn, which is of special interest, the closure of the inverse image of the discriminant by f, which possibly is with non isolated singularities. For this hypersurface we apply results of Gaffney and Gassler [6], and Gaffney and Massey [7], to show how the Lê numbers control the polar invariants of the strata in this hypersurface. Gaffney shows that the number of invariants needed is 4n+10. In the corank one case we reduce this number to 2n+2. The polar multiplicities are also an interesting tool to compute the local Euler obstruction of a singular variety, see [12]. Here we apply this result to obtain explicit algebraic formulae to compute the local Euler obstruction of the stable types which appear in the singular set and also for the stable types which appear in the discriminant, of corank one map germs from Cn to C3 with n ≥ 3. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 2022-04-28T19:03:54Z 2022-04-28T19:03:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-7643-7776-2_19 Trends in Mathematics, v. 39, p. 263-287. 2297-024X 2297-0215 http://hdl.handle.net/11449/220646 10.1007/978-3-7643-7776-2_19 2-s2.0-84975749021 |
url |
http://dx.doi.org/10.1007/978-3-7643-7776-2_19 http://hdl.handle.net/11449/220646 |
identifier_str_mv |
Trends in Mathematics, v. 39, p. 263-287. 2297-024X 2297-0215 10.1007/978-3-7643-7776-2_19 2-s2.0-84975749021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Trends in Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
263-287 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128553541173248 |