O teorema de Amitsur para identidades racionais em anéis com divisão

Detalhes bibliográficos
Autor(a) principal: Oliveira, Pedro Russo de
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422/
Resumo: Sejam D um anel com divisão de centro infinito K e C um subcorpo infinito de K. Se a dimensão de D sobre K é infinita, provaremos que uma identidade racional (com coeficientes em C) é válida em D se e somente se é válida em todos os anéis Mn(C) das matrizes n x n sobre C, para qualquer n positivo. Para tais fins, exporemos a teoria de identidades racionais em sua forma original, proposta por Amitsur (Journal of Algebra, 1966). Os resultados obtidos serão usados em duas aplicações. Inicialmente, mostraremos que o grupo multiplicativo de D não satisfaz identidades de grupo não triviais. Em seguida, construiremos um anel com divisão de todas as funções racionais em D, o qual denotaremos por CD(x), cuja estrutura depende apenas da dimensão de D sobre K. Quando a dimensão de D sobre K é infinita, vamos mostrar que CD(x) = C(x) pode ser compreendido como um anel universal de frações da álgebra livre com unidade sobre C gerada por infinitas indeterminadas não comutativas x1, x2... . Enfatizamos que existe uma versão em língua inglesa do presente trabalho.
id USP_726c2703cc0ce9723dfd3495b110b88d
oai_identifier_str oai:teses.usp.br:tde-15072015-143422
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling O teorema de Amitsur para identidades racionais em anéis com divisãoAmitsurs theorem for rational identities in division ringsAnéis com divisãoDivision ringsIdentidadesIdentidades racionaisIdentitiesRational identitiesSejam D um anel com divisão de centro infinito K e C um subcorpo infinito de K. Se a dimensão de D sobre K é infinita, provaremos que uma identidade racional (com coeficientes em C) é válida em D se e somente se é válida em todos os anéis Mn(C) das matrizes n x n sobre C, para qualquer n positivo. Para tais fins, exporemos a teoria de identidades racionais em sua forma original, proposta por Amitsur (Journal of Algebra, 1966). Os resultados obtidos serão usados em duas aplicações. Inicialmente, mostraremos que o grupo multiplicativo de D não satisfaz identidades de grupo não triviais. Em seguida, construiremos um anel com divisão de todas as funções racionais em D, o qual denotaremos por CD(x), cuja estrutura depende apenas da dimensão de D sobre K. Quando a dimensão de D sobre K é infinita, vamos mostrar que CD(x) = C(x) pode ser compreendido como um anel universal de frações da álgebra livre com unidade sobre C gerada por infinitas indeterminadas não comutativas x1, x2... . Enfatizamos que existe uma versão em língua inglesa do presente trabalho.Let D be a division ring with infinite center K and let C be an infinite subfield of K. If the dimension of D over K is infinite, we shall prove that a rational identity (with coefficients in C) holds in D if and only if it is a rational identity holding in every ring Mn(C) of n x n matrices over C, for all positive n. In order to do that, we shall expose the theory of rational identities in its original form, proposed by Amitsur (Journal of Algebra, 1966). The results we are to obtain will be used in two major applications. Firstly, we will show that the multiplicative group of D does not satisfy a non-trivial group identity. Afterwards, we construct a division ring of all rational functions in D, which we denote by CD(x), whose structure depends only on the dimension of D over K. When the dimension of D over K is infinite, we show that CD(x) = C(x) may be understood as an universal ring of fractions of the free unitary algebra over C generated by infinite noncommutative indeterminates x1, x2... . We emphasize that there exists an English version of the whole text.Biblioteca Digitais de Teses e Dissertações da USPGoncalves, Jairo ZacariasOliveira, Pedro Russo de2015-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-15072015-143422Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv O teorema de Amitsur para identidades racionais em anéis com divisão
Amitsurs theorem for rational identities in division rings
title O teorema de Amitsur para identidades racionais em anéis com divisão
spellingShingle O teorema de Amitsur para identidades racionais em anéis com divisão
Oliveira, Pedro Russo de
Anéis com divisão
Division rings
Identidades
Identidades racionais
Identities
Rational identities
title_short O teorema de Amitsur para identidades racionais em anéis com divisão
title_full O teorema de Amitsur para identidades racionais em anéis com divisão
title_fullStr O teorema de Amitsur para identidades racionais em anéis com divisão
title_full_unstemmed O teorema de Amitsur para identidades racionais em anéis com divisão
title_sort O teorema de Amitsur para identidades racionais em anéis com divisão
author Oliveira, Pedro Russo de
author_facet Oliveira, Pedro Russo de
author_role author
dc.contributor.none.fl_str_mv Goncalves, Jairo Zacarias
dc.contributor.author.fl_str_mv Oliveira, Pedro Russo de
dc.subject.por.fl_str_mv Anéis com divisão
Division rings
Identidades
Identidades racionais
Identities
Rational identities
topic Anéis com divisão
Division rings
Identidades
Identidades racionais
Identities
Rational identities
description Sejam D um anel com divisão de centro infinito K e C um subcorpo infinito de K. Se a dimensão de D sobre K é infinita, provaremos que uma identidade racional (com coeficientes em C) é válida em D se e somente se é válida em todos os anéis Mn(C) das matrizes n x n sobre C, para qualquer n positivo. Para tais fins, exporemos a teoria de identidades racionais em sua forma original, proposta por Amitsur (Journal of Algebra, 1966). Os resultados obtidos serão usados em duas aplicações. Inicialmente, mostraremos que o grupo multiplicativo de D não satisfaz identidades de grupo não triviais. Em seguida, construiremos um anel com divisão de todas as funções racionais em D, o qual denotaremos por CD(x), cuja estrutura depende apenas da dimensão de D sobre K. Quando a dimensão de D sobre K é infinita, vamos mostrar que CD(x) = C(x) pode ser compreendido como um anel universal de frações da álgebra livre com unidade sobre C gerada por infinitas indeterminadas não comutativas x1, x2... . Enfatizamos que existe uma versão em língua inglesa do presente trabalho.
publishDate 2015
dc.date.none.fl_str_mv 2015-05-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257025163034624