Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos

Detalhes bibliográficos
Autor(a) principal: Policastro, Cláudio Adriano
Data de Publicação: 2004
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122014-085801/
Resumo: Raciocínio Baseado em Casos é uma metodologia para a resolução de problemas baseado em experiências passadas. Essa metodologia tenta solucionar um novo problema recuperando e adaptando soluções previamente conhecidas de problemas similares. Porém, cada solução recuperada, em geral, requer adaptações para que possa ser utilizada como solução de um novo problema. Portanto, a adaptação de casos é uma característica desejável em sistemas de Raciocínio Baseado em Casos. Um dos maiores desafios da área de RBC é o desenvolvimento de métodos eficientes para a adaptação de casos. Em contraste com a aquisição de casos, o conhecimento para adaptação não é facilmente disponibilizado e é de difícil obtenção (Hanney, 1996; Wiratunga et al., 2002). A forma de adaptação mais utilizada é a codificação de regras de adaptação, demandando um significativo esforço para a aquisição de conhecimento (Hanney, 1996). Uma alternativa para superar as dificuldades associadas à aquisição de conhecimento para adaptação de casos tem sido a utilização de abordagens híbridas e de algoritmos de aprendizado automático para a aquisição do conhecimento utilizado para a adaptação. Este trabalho investiga a utilização de abordagens híbridas para adaptação de casos empregando algoritmos de Aprendizado de Máquina. As abordagens aprendem o conhecimento necessário para a adaptação de casos automaticamente a partir de uma base de casos e aplicam esse conhecimento para realizar a adaptação de soluções recuperadas.
id USP_72b44ece6a62ca3543eb04a288be9e11
oai_identifier_str oai:teses.usp.br:tde-05122014-085801
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estratégias de adaptação de casos para sistemas de raciocínio baseado em casosCase adaptation strategies in case based reasoning systemsNão disponívelNot availableRaciocínio Baseado em Casos é uma metodologia para a resolução de problemas baseado em experiências passadas. Essa metodologia tenta solucionar um novo problema recuperando e adaptando soluções previamente conhecidas de problemas similares. Porém, cada solução recuperada, em geral, requer adaptações para que possa ser utilizada como solução de um novo problema. Portanto, a adaptação de casos é uma característica desejável em sistemas de Raciocínio Baseado em Casos. Um dos maiores desafios da área de RBC é o desenvolvimento de métodos eficientes para a adaptação de casos. Em contraste com a aquisição de casos, o conhecimento para adaptação não é facilmente disponibilizado e é de difícil obtenção (Hanney, 1996; Wiratunga et al., 2002). A forma de adaptação mais utilizada é a codificação de regras de adaptação, demandando um significativo esforço para a aquisição de conhecimento (Hanney, 1996). Uma alternativa para superar as dificuldades associadas à aquisição de conhecimento para adaptação de casos tem sido a utilização de abordagens híbridas e de algoritmos de aprendizado automático para a aquisição do conhecimento utilizado para a adaptação. Este trabalho investiga a utilização de abordagens híbridas para adaptação de casos empregando algoritmos de Aprendizado de Máquina. As abordagens aprendem o conhecimento necessário para a adaptação de casos automaticamente a partir de uma base de casos e aplicam esse conhecimento para realizar a adaptação de soluções recuperadas.Case Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solntions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major ehallenges in Case Based Reasoning is the development of an efficient methodology for case adaptation. In contrast to case acquisition, knowledge for case adaptation is not easily available and is hard to obtain (Hanney, 1996; Wiratunga et aí., 2002). The most widely used form of adaptation employs handcoded adaptation rules, which demands a significant effort of knowledge acquisition for case adaptation, presenting a few difflculties (Hanney, 1996). An alternative to overcome the difflculties associated to the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. This Work investigates the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches automatically le~ arn adaptation knowledge from a case base and apply it to adapt retrieved solutions.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira dePolicastro, Cláudio Adriano2004-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122014-085801/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-05122014-085801Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
Case adaptation strategies in case based reasoning systems
title Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
spellingShingle Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
Policastro, Cláudio Adriano
Não disponível
Not available
title_short Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
title_full Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
title_fullStr Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
title_full_unstemmed Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
title_sort Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos
author Policastro, Cláudio Adriano
author_facet Policastro, Cláudio Adriano
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Policastro, Cláudio Adriano
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Raciocínio Baseado em Casos é uma metodologia para a resolução de problemas baseado em experiências passadas. Essa metodologia tenta solucionar um novo problema recuperando e adaptando soluções previamente conhecidas de problemas similares. Porém, cada solução recuperada, em geral, requer adaptações para que possa ser utilizada como solução de um novo problema. Portanto, a adaptação de casos é uma característica desejável em sistemas de Raciocínio Baseado em Casos. Um dos maiores desafios da área de RBC é o desenvolvimento de métodos eficientes para a adaptação de casos. Em contraste com a aquisição de casos, o conhecimento para adaptação não é facilmente disponibilizado e é de difícil obtenção (Hanney, 1996; Wiratunga et al., 2002). A forma de adaptação mais utilizada é a codificação de regras de adaptação, demandando um significativo esforço para a aquisição de conhecimento (Hanney, 1996). Uma alternativa para superar as dificuldades associadas à aquisição de conhecimento para adaptação de casos tem sido a utilização de abordagens híbridas e de algoritmos de aprendizado automático para a aquisição do conhecimento utilizado para a adaptação. Este trabalho investiga a utilização de abordagens híbridas para adaptação de casos empregando algoritmos de Aprendizado de Máquina. As abordagens aprendem o conhecimento necessário para a adaptação de casos automaticamente a partir de uma base de casos e aplicam esse conhecimento para realizar a adaptação de soluções recuperadas.
publishDate 2004
dc.date.none.fl_str_mv 2004-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122014-085801/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122014-085801/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256752485040128