Avaliação de valores em risco em séries de retorno financeiro

Detalhes bibliográficos
Autor(a) principal: Gomes, Camilla Ferreira
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55137/tde-01022018-161419/
Resumo: Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado.
id USP_74224f1dbc0d530608718578cc97c832
oai_identifier_str oai:teses.usp.br:tde-01022018-161419
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Avaliação de valores em risco em séries de retorno financeiroValue at risk evaluation in financial return time seriesARCH modelDistribuição normalFinancial returnsModelo ARCHNormal distributionRetornos financeirosValor em riscoValue at riskOs métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado.The most used methods for risk evaluation in the financial market usually depend strongly on the distribution assigned to the financial returns. When we assign a normal distribution, results tend to underestimate the Value at Risk (VaR), since the normal distribution usually has a lighter tail than those from the empirical distribution of financial time series. Many other distributions have been proposed in the literature, but we need to evaluate their computational effort for obtaining the value at risk when compared to the easiness of calculation of the normal distribution. In this work, we compare several models for calculating the value at risk, such as the normal, the empirical-quantile and the autoregressive (AR) models, evaluating their goodness-of-fit to the tail of the distribution of financial return time series and the impact of applying the calculated VaR to the following year. We also highlight the autoregressive conditional heteroskedasticity (ARCH) model due to its performance in detecting the volatility in the series. The ARCH model has proved to be efficient and able to generate relevant information to the investors and to the financial market with a moderate computational cost.Biblioteca Digitais de Teses e Dissertações da USPAndrade Filho, Marinho Gomes deGomes, Camilla Ferreira2017-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55137/tde-01022018-161419/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-01022018-161419Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação de valores em risco em séries de retorno financeiro
Value at risk evaluation in financial return time series
title Avaliação de valores em risco em séries de retorno financeiro
spellingShingle Avaliação de valores em risco em séries de retorno financeiro
Gomes, Camilla Ferreira
ARCH model
Distribuição normal
Financial returns
Modelo ARCH
Normal distribution
Retornos financeiros
Valor em risco
Value at risk
title_short Avaliação de valores em risco em séries de retorno financeiro
title_full Avaliação de valores em risco em séries de retorno financeiro
title_fullStr Avaliação de valores em risco em séries de retorno financeiro
title_full_unstemmed Avaliação de valores em risco em séries de retorno financeiro
title_sort Avaliação de valores em risco em séries de retorno financeiro
author Gomes, Camilla Ferreira
author_facet Gomes, Camilla Ferreira
author_role author
dc.contributor.none.fl_str_mv Andrade Filho, Marinho Gomes de
dc.contributor.author.fl_str_mv Gomes, Camilla Ferreira
dc.subject.por.fl_str_mv ARCH model
Distribuição normal
Financial returns
Modelo ARCH
Normal distribution
Retornos financeiros
Valor em risco
Value at risk
topic ARCH model
Distribuição normal
Financial returns
Modelo ARCH
Normal distribution
Retornos financeiros
Valor em risco
Value at risk
description Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55137/tde-01022018-161419/
url http://www.teses.usp.br/teses/disponiveis/55/55137/tde-01022018-161419/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256569959415808