Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas

Detalhes bibliográficos
Autor(a) principal: Senger, Luciano José
Data de Publicação: 2005
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012018-103454/
Resumo: Esta tese apresenta uma abordagem dinâmica e incremental para a exploração de características de execução e de submissão de aplicações paralelas visando o escalonamento de processos. Modelos de classificação e de predição de características de aplicações são construídos, utilizando algoritmos de aprendizado de máquina adaptados como ferramentas para a aquisição de conhecimento sobre a carga de trabalho. Os paradigmas conexionista e baseado em instâncias orientam a aquisição de conhecimento e os algoritmos e suas extensões permitem a atualização do conhecimento obtido, a medida que informações mais recentes tomamse disponíveis. Esses algoritmos são implementados e avaliados utilizando informações obtidas através da monitoração da execução de aplicações paralelas e da utilização de traços de execução representativos da carga de trabalho sequencial e paralela de diferentes centros de computação. A avaliação é conduzida visando observar o desempenho nas tarefas de aquisição de conhecimento e classificação, assim como o desempenho computacional das implementações dos algoritmos. Algoritmos de escalonamento são definidos e avaliados para observar as vantagens da utilização do conhecimento adquirido, considerando cenários de execução baseados em máquinas paralelas e sistemas distribuídos. Os resultados obtidos com este trabalho justificam a importância da utilização desse conhecimento nas decisões do software de escalonamento em sistemas computacionais distribuídos e contribuem para a definição de mecanismos adequados para a aquisição e utilização desse conhecimento em sistemas paralelos reais.
id USP_74b365d0b117fb2c61e374f2033c0132
oai_identifier_str oai:teses.usp.br:tde-10012018-103454
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelasNot availableNão disponívelNot availabeEsta tese apresenta uma abordagem dinâmica e incremental para a exploração de características de execução e de submissão de aplicações paralelas visando o escalonamento de processos. Modelos de classificação e de predição de características de aplicações são construídos, utilizando algoritmos de aprendizado de máquina adaptados como ferramentas para a aquisição de conhecimento sobre a carga de trabalho. Os paradigmas conexionista e baseado em instâncias orientam a aquisição de conhecimento e os algoritmos e suas extensões permitem a atualização do conhecimento obtido, a medida que informações mais recentes tomamse disponíveis. Esses algoritmos são implementados e avaliados utilizando informações obtidas através da monitoração da execução de aplicações paralelas e da utilização de traços de execução representativos da carga de trabalho sequencial e paralela de diferentes centros de computação. A avaliação é conduzida visando observar o desempenho nas tarefas de aquisição de conhecimento e classificação, assim como o desempenho computacional das implementações dos algoritmos. Algoritmos de escalonamento são definidos e avaliados para observar as vantagens da utilização do conhecimento adquirido, considerando cenários de execução baseados em máquinas paralelas e sistemas distribuídos. Os resultados obtidos com este trabalho justificam a importância da utilização desse conhecimento nas decisões do software de escalonamento em sistemas computacionais distribuídos e contribuem para a definição de mecanismos adequados para a aquisição e utilização desse conhecimento em sistemas paralelos reais.This thesis presents a dynamic and incremental approach for exploring execution and submission characteristics of parallel applications aiming at improving process scheduling. Models for classifying and predicting applications behavior are developed, considering machine learning algorithms as tools for acquiring knowledge about workload. The neural network and instancebased paradigms guide the knowledge acquisition and the algorithms and their extensions allow knowledge updating when new information occurs. The algorithms are implemented and evaluated using information obtained from monitoring the parallel application execution and using representative sequential and parallel workload traces acquired from different computing centers. The evaluation is conducted aiming at observing the knowledge acquisition and classilication tasks performance as well as the algorithms implementation computing performance. Scheduling algorithms are developed and evaluated for observing the knowledge utilization improvements, using parallel machines and distributed systems as an execution platform. The results obtained in this thesis justify the importance of employing knowledge for software scheduling decisions on distributed computing systems and allow developing suitable mechanisms for acquiring and using application knowledge in real parallel systems.Biblioteca Digitais de Teses e Dissertações da USPSantana, Marcos JoséSenger, Luciano José2005-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012018-103454/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-11-08T14:21:17Zoai:teses.usp.br:tde-10012018-103454Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-11-08T14:21:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
Not available
title Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
spellingShingle Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
Senger, Luciano José
Não disponível
Not availabe
title_short Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
title_full Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
title_fullStr Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
title_full_unstemmed Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
title_sort Escalonamento de processos: uma abordagem dinâmica e incremental para a exploração de características de aplicações paralelas
author Senger, Luciano José
author_facet Senger, Luciano José
author_role author
dc.contributor.none.fl_str_mv Santana, Marcos José
dc.contributor.author.fl_str_mv Senger, Luciano José
dc.subject.por.fl_str_mv Não disponível
Not availabe
topic Não disponível
Not availabe
description Esta tese apresenta uma abordagem dinâmica e incremental para a exploração de características de execução e de submissão de aplicações paralelas visando o escalonamento de processos. Modelos de classificação e de predição de características de aplicações são construídos, utilizando algoritmos de aprendizado de máquina adaptados como ferramentas para a aquisição de conhecimento sobre a carga de trabalho. Os paradigmas conexionista e baseado em instâncias orientam a aquisição de conhecimento e os algoritmos e suas extensões permitem a atualização do conhecimento obtido, a medida que informações mais recentes tomamse disponíveis. Esses algoritmos são implementados e avaliados utilizando informações obtidas através da monitoração da execução de aplicações paralelas e da utilização de traços de execução representativos da carga de trabalho sequencial e paralela de diferentes centros de computação. A avaliação é conduzida visando observar o desempenho nas tarefas de aquisição de conhecimento e classificação, assim como o desempenho computacional das implementações dos algoritmos. Algoritmos de escalonamento são definidos e avaliados para observar as vantagens da utilização do conhecimento adquirido, considerando cenários de execução baseados em máquinas paralelas e sistemas distribuídos. Os resultados obtidos com este trabalho justificam a importância da utilização desse conhecimento nas decisões do software de escalonamento em sistemas computacionais distribuídos e contribuem para a definição de mecanismos adequados para a aquisição e utilização desse conhecimento em sistemas paralelos reais.
publishDate 2005
dc.date.none.fl_str_mv 2005-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012018-103454/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012018-103454/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256840011776000