Representações irredutíveis de grau dois da primeira álgebra de Weyl
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-172345/ |
Resumo: | Sejam K um corpo comutativo de caraterística zero. Definimos a álgebras associativa sobre K com dois geradores p, q onde pq qp = 1, como a primeira álgebra de Weyl, denotaremos esta por A 1 . As representações irredutíveis de grau um de dimensão infinita de A 1 , foram descritos por R. Block em (Block , 1981). Baseados nesta ideia, são descritas as represen- tações irredutíveis de grau dois de dimensão infinita de A 1 . No capítulo 1 são estudadas a representações da localização S 1 A 1 = B onde S = K[ q ] , ver (Block , 1981). Também apresentamos algumas definições e resultados relevantes para A 1 , os quais estabelecem uma relação entre as representações de álgebras de Lie nilpotente e as representações da enésima álgebra de Weyl A n , ver (Dixmier , 1959). No segundo capítulo é abordado o estudo da estrutura para A 1 -módulos de grau dois de dimensão infinita, obtendo uma descrição completa destes módulos. Usando esta estrutura é dada uma relação entre uma classe de Sl 2 -módulos de dimensão infinita e os A 1 -módulos de grau dois. Finalmente, no capítulo 3 são dados alguns fatos importares sobre a estrutura do Ext 1 (M, N ), onde M e N são A 1 -módulos irredutíveis de dimensão infinita com graus n 1 e n 2 repectivemente. |
id |
USP_7b013ba9a18ac818a2ac95de3727e895 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03062019-172345 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Representações irredutíveis de grau dois da primeira álgebra de WeylIrreducible representations the two deg of the first Weyl algebraÁlgebras de WeylDomínios de ideais principaisExt 1Ext 1Irreducibles modules of the degree nLocalização de anéisLocalization rings and principal ideal domainMódulos irredutíveis de grau nPolinômios irredutíveisWeyl algebrasSejam K um corpo comutativo de caraterística zero. Definimos a álgebras associativa sobre K com dois geradores p, q onde pq qp = 1, como a primeira álgebra de Weyl, denotaremos esta por A 1 . As representações irredutíveis de grau um de dimensão infinita de A 1 , foram descritos por R. Block em (Block , 1981). Baseados nesta ideia, são descritas as represen- tações irredutíveis de grau dois de dimensão infinita de A 1 . No capítulo 1 são estudadas a representações da localização S 1 A 1 = B onde S = K[ q ] , ver (Block , 1981). Também apresentamos algumas definições e resultados relevantes para A 1 , os quais estabelecem uma relação entre as representações de álgebras de Lie nilpotente e as representações da enésima álgebra de Weyl A n , ver (Dixmier , 1959). No segundo capítulo é abordado o estudo da estrutura para A 1 -módulos de grau dois de dimensão infinita, obtendo uma descrição completa destes módulos. Usando esta estrutura é dada uma relação entre uma classe de Sl 2 -módulos de dimensão infinita e os A 1 -módulos de grau dois. Finalmente, no capítulo 3 são dados alguns fatos importares sobre a estrutura do Ext 1 (M, N ), onde M e N são A 1 -módulos irredutíveis de dimensão infinita com graus n 1 e n 2 repectivemente.Let K be a commutative field such of zero characteristic. The associtive algebras from K whit two geradors p, q shuch that pq qp = 1 is the first Weyl algebra and it algebra going to denoted for A 1 . The structure of irreducible representations of degree one of infinite dimen- sional of A 1 , studied by R.Block (Block , 1981) on 1981. Based in this paper, we characterize the structure of degree two of irreducible representations of infinite dimensional of A 1 . In the first chapter, we speak of localization rings and defined B, we also give tools and definitions needed over Weyl algebras and nilpotent Lie algebras. In the second chapter we give the review for to the problem of A 1 -modules of degree two of infinite dimensional. At the end of the thesis we calculate the Ext 1 (M, N ), by M e N irreducibles A 1 -modules of degree n.Biblioteca Digitais de Teses e Dissertações da USPGrichkov, AlexandreDuque, Cesar Augusto Rodriguez2015-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-172345/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:40:43Zoai:teses.usp.br:tde-03062019-172345Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:40:43Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Representações irredutíveis de grau dois da primeira álgebra de Weyl Irreducible representations the two deg of the first Weyl algebra |
title |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
spellingShingle |
Representações irredutíveis de grau dois da primeira álgebra de Weyl Duque, Cesar Augusto Rodriguez Álgebras de Weyl Domínios de ideais principais Ext 1 Ext 1 Irreducibles modules of the degree n Localização de anéis Localization rings and principal ideal domain Módulos irredutíveis de grau n Polinômios irredutíveis Weyl algebras |
title_short |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
title_full |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
title_fullStr |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
title_full_unstemmed |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
title_sort |
Representações irredutíveis de grau dois da primeira álgebra de Weyl |
author |
Duque, Cesar Augusto Rodriguez |
author_facet |
Duque, Cesar Augusto Rodriguez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Grichkov, Alexandre |
dc.contributor.author.fl_str_mv |
Duque, Cesar Augusto Rodriguez |
dc.subject.por.fl_str_mv |
Álgebras de Weyl Domínios de ideais principais Ext 1 Ext 1 Irreducibles modules of the degree n Localização de anéis Localization rings and principal ideal domain Módulos irredutíveis de grau n Polinômios irredutíveis Weyl algebras |
topic |
Álgebras de Weyl Domínios de ideais principais Ext 1 Ext 1 Irreducibles modules of the degree n Localização de anéis Localization rings and principal ideal domain Módulos irredutíveis de grau n Polinômios irredutíveis Weyl algebras |
description |
Sejam K um corpo comutativo de caraterística zero. Definimos a álgebras associativa sobre K com dois geradores p, q onde pq qp = 1, como a primeira álgebra de Weyl, denotaremos esta por A 1 . As representações irredutíveis de grau um de dimensão infinita de A 1 , foram descritos por R. Block em (Block , 1981). Baseados nesta ideia, são descritas as represen- tações irredutíveis de grau dois de dimensão infinita de A 1 . No capítulo 1 são estudadas a representações da localização S 1 A 1 = B onde S = K[ q ] , ver (Block , 1981). Também apresentamos algumas definições e resultados relevantes para A 1 , os quais estabelecem uma relação entre as representações de álgebras de Lie nilpotente e as representações da enésima álgebra de Weyl A n , ver (Dixmier , 1959). No segundo capítulo é abordado o estudo da estrutura para A 1 -módulos de grau dois de dimensão infinita, obtendo uma descrição completa destes módulos. Usando esta estrutura é dada uma relação entre uma classe de Sl 2 -módulos de dimensão infinita e os A 1 -módulos de grau dois. Finalmente, no capítulo 3 são dados alguns fatos importares sobre a estrutura do Ext 1 (M, N ), onde M e N são A 1 -módulos irredutíveis de dimensão infinita com graus n 1 e n 2 repectivemente. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-172345/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-172345/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256638430380032 |