Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/ |
Resumo: |  In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved. |
id |
USP_7b3cd8116cdf2fe6c4661e9af2a40426 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19012024-150115 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-makingSoft Systems Thinking e Aspect-Based Sentiment Analysis para apoiar a gestão de desempenho e a tomada de decisõesAspect-Based Sentiment AnalysisSoft Systems MethodologyAspect-Based Sentiment Analysiscircular economyeconomia circulargestão de desempenhométodos de estruturação de problemasperformance managementproblem structuring methodsSoft Systems Methodology In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved. Para gerir eficazmente uma organização, é essencial incorporar nos processos de tomada de decisão as perspectivas de seus stakeholders e múltiplos objetivos, por vezes conflitantes, ao mesmo tempo que se lida com ambientes que normalmente incluem situações não estruturadas e mal definidas. Este cenário complexo dificulta a identificação da origem de problemas e a determinação das melhorias necessárias. Essa pesquisa de doutorado fornece uma abordagem estruturada para análise desses cenários complexos para identificar oportunidades de melhoria e fornecer insights valiosos para a tomada de decisões. Isso é feito através da proposição de um framework que integra a Soft Systems Methodology (SSM) e percepções dos clientes obtidas através da implementação de Aspect-Based Sentiment Analysis (ABSA). Especialistas participaram de um workshop para construir um modelo conceitual usando SSM, após o que dados gerados pelos clientes foram extraídos de mídias sociais para a implementação do ABSA. Em seguida, essa abordagem foi apresentada em um caso ilustrativo focado em organizações cujos modelos de negócios implementam práticas de economia circular em direção à sustentabilidade. Os resultados demonstraram o potencial desse framework em aplicações nesse contexto inovador, organizando efetivamente informações relevantes para a gestão de desempenho e identificando oportunidades de melhoria. Além disso, esta abordagem multimetodológica amplia o domínio de utilização da SSM como o apoio a atividades de gestão recorrentes. Além disso, dada a concepção genérica do framework, este pode ser aplicado em diferentes contextos. O modelo conceitual pode ser empregado para análises semelhantes em organizações que identificam seus processos, objetivos e propostas de valor como semelhantes aos modelados. Futuros desenvolvimentos podem incorporar estas estruturas em estudos que envolvam dados de outras organizações para analisar melhor os seus benefícios, bem como identificar como podem ser melhoradas.Biblioteca Digitais de Teses e Dissertações da USPCarpinetti, Luiz Cesar RibeiroFeitosa, Ingrid Saiala Cavalcante de Souza2023-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-24T13:35:02Zoai:teses.usp.br:tde-19012024-150115Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-24T13:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making Soft Systems Thinking e Aspect-Based Sentiment Analysis para apoiar a gestão de desempenho e a tomada de decisões |
title |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
spellingShingle |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making Feitosa, Ingrid Saiala Cavalcante de Souza Aspect-Based Sentiment Analysis Soft Systems Methodology Aspect-Based Sentiment Analysis circular economy economia circular gestão de desempenho métodos de estruturação de problemas performance management problem structuring methods Soft Systems Methodology |
title_short |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
title_full |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
title_fullStr |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
title_full_unstemmed |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
title_sort |
Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making |
author |
Feitosa, Ingrid Saiala Cavalcante de Souza |
author_facet |
Feitosa, Ingrid Saiala Cavalcante de Souza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carpinetti, Luiz Cesar Ribeiro |
dc.contributor.author.fl_str_mv |
Feitosa, Ingrid Saiala Cavalcante de Souza |
dc.subject.por.fl_str_mv |
Aspect-Based Sentiment Analysis Soft Systems Methodology Aspect-Based Sentiment Analysis circular economy economia circular gestão de desempenho métodos de estruturação de problemas performance management problem structuring methods Soft Systems Methodology |
topic |
Aspect-Based Sentiment Analysis Soft Systems Methodology Aspect-Based Sentiment Analysis circular economy economia circular gestão de desempenho métodos de estruturação de problemas performance management problem structuring methods Soft Systems Methodology |
description |
 In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257125040947200 |