Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making

Detalhes bibliográficos
Autor(a) principal: Feitosa, Ingrid Saiala Cavalcante de Souza
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/
Resumo:  In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved.
id USP_7b3cd8116cdf2fe6c4661e9af2a40426
oai_identifier_str oai:teses.usp.br:tde-19012024-150115
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-makingSoft Systems Thinking e Aspect-Based Sentiment Analysis para apoiar a gestão de desempenho e a tomada de decisõesAspect-Based Sentiment AnalysisSoft Systems MethodologyAspect-Based Sentiment Analysiscircular economyeconomia circulargestão de desempenhométodos de estruturação de problemasperformance managementproblem structuring methodsSoft Systems Methodology In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved. Para gerir eficazmente uma organização, é essencial incorporar nos processos de tomada de decisão as perspectivas de seus stakeholders e múltiplos objetivos, por vezes conflitantes, ao mesmo tempo que se lida com ambientes que normalmente incluem situações não estruturadas e mal definidas. Este cenário complexo dificulta a identificação da origem de problemas e a determinação das melhorias necessárias. Essa pesquisa de doutorado fornece uma abordagem estruturada para análise desses cenários complexos para identificar oportunidades de melhoria e fornecer insights valiosos para a tomada de decisões. Isso é feito através da proposição de um framework que integra a Soft Systems Methodology (SSM) e percepções dos clientes obtidas através da implementação de Aspect-Based Sentiment Analysis (ABSA). Especialistas participaram de um workshop para construir um modelo conceitual usando SSM, após o que dados gerados pelos clientes foram extraídos de mídias sociais para a implementação do ABSA. Em seguida, essa abordagem foi apresentada em um caso ilustrativo focado em organizações cujos modelos de negócios implementam práticas de economia circular em direção à sustentabilidade. Os resultados demonstraram o potencial desse framework em aplicações nesse contexto inovador, organizando efetivamente informações relevantes para a gestão de desempenho e identificando oportunidades de melhoria. Além disso, esta abordagem multimetodológica amplia o domínio de utilização da SSM como o apoio a atividades de gestão recorrentes. Além disso, dada a concepção genérica do framework, este pode ser aplicado em diferentes contextos. O modelo conceitual pode ser empregado para análises semelhantes em organizações que identificam seus processos, objetivos e propostas de valor como semelhantes aos modelados. Futuros desenvolvimentos podem incorporar estas estruturas em estudos que envolvam dados de outras organizações para analisar melhor os seus benefícios, bem como identificar como podem ser melhoradas.Biblioteca Digitais de Teses e Dissertações da USPCarpinetti, Luiz Cesar RibeiroFeitosa, Ingrid Saiala Cavalcante de Souza2023-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-24T13:35:02Zoai:teses.usp.br:tde-19012024-150115Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-24T13:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
Soft Systems Thinking e Aspect-Based Sentiment Analysis para apoiar a gestão de desempenho e a tomada de decisões
title Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
spellingShingle Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
Feitosa, Ingrid Saiala Cavalcante de Souza
Aspect-Based Sentiment Analysis
Soft Systems Methodology
Aspect-Based Sentiment Analysis
circular economy
economia circular
gestão de desempenho
métodos de estruturação de problemas
performance management
problem structuring methods
Soft Systems Methodology
title_short Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
title_full Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
title_fullStr Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
title_full_unstemmed Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
title_sort Soft Systems Thinking and Aspect-Based Sentiment Analysis to support performance management and better-informed decision-making
author Feitosa, Ingrid Saiala Cavalcante de Souza
author_facet Feitosa, Ingrid Saiala Cavalcante de Souza
author_role author
dc.contributor.none.fl_str_mv Carpinetti, Luiz Cesar Ribeiro
dc.contributor.author.fl_str_mv Feitosa, Ingrid Saiala Cavalcante de Souza
dc.subject.por.fl_str_mv Aspect-Based Sentiment Analysis
Soft Systems Methodology
Aspect-Based Sentiment Analysis
circular economy
economia circular
gestão de desempenho
métodos de estruturação de problemas
performance management
problem structuring methods
Soft Systems Methodology
topic Aspect-Based Sentiment Analysis
Soft Systems Methodology
Aspect-Based Sentiment Analysis
circular economy
economia circular
gestão de desempenho
métodos de estruturação de problemas
performance management
problem structuring methods
Soft Systems Methodology
description  In order to effectively manage an organization, it is essential to incorporate stakeholders\' perspectives and multiple, sometimes conflicting, objectives into decision-making processes, while handling environments that commonly include unstructured and ill-defined situations. This complex scenario hampers the identification of problem sources and the determination of necessary improvements. This doctoral research provides a structured approach for analysis in these complex scenarios to identify improvement opportunities and provide valuable insights for decision-making. This is achieved through a proposed framework that integrates Soft Systems Methodology (SSM) and customers\' perceptions obtained through the implementation of Aspect-Based Sentiment Analysis (ABSA). Specialists attended a workshop to design a conceptual model using SSM, after which customer-generated data was extracted from social media for the ABSA implementation. Then, the implementation was presented in an illustrative case focused on organisations whose business models implement circular economy practices towards sustainability. The results demonstrated the framework potential of being applied in this innovative context, effectively organising relevant information for performance management and identifying improvement opportunities. Besides, this multimethodological approach broadens the scope of SSM usage by supporting recurrent management activities. Also, given the generic design of the framework, it may be applied in different contexts. The conceptual model might be employed for similar analysis within organisations that identify their process, objectives, and value proposition as similar to the ones modelled. Further developments should incorporate these structures in studies involving data from other organisations to further analyse their benefits as well as identify how they can be improved.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/
url https://www.teses.usp.br/teses/disponiveis/18/18156/tde-19012024-150115/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257125040947200