Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil

Detalhes bibliográficos
Autor(a) principal: Pereira, Rodolfo Armando de Almeida
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-13042023-082447/
Resumo: The Brazilian sugarcane industry is constantly developing, testing, and launching new cultivars and management practices to increase productivity. Due to climate change issues and limitations for expanding areas, farms are constantly pressured to increase agricultural efficiency. The use of process-based models (PBCM) to test cultivars and management options in different production environments is a reality and has been increasingly used. PBCMs are the state of the art in agricultural modeling and are increasingly complex, requiring several parameters to describe cultivation processes and boundary conditions. In general, PBCMs use the deterministic approach to simplify the uncertainty present in the environment using a single set of parameters. In practice, this uncertainty is seen in the variability of data collected in a field experiment, which is commonly represented by dispersion statistics such as standard deviation and variance. One way to explore this uncertainty is to use the stochastic approach, inserting a range of variability in the parameters and inputs of the simulation. This study aimed to use the stochastic approach to explore uncertainty and determine which parameters of the SAMUCA model are most influential in the simulation process. For this, the recent version of the SAMUCA model was used, inserting three uncertainty scenarios: uncertainty analysis only for genotype parameters (UG), uncertainty analysis only for soil parameters (US), and analysis of soil parameters and genotype (UGS). In this first stage, these three scenarios were simulated for a 4-year field experiment, with the crop cultivated under the effect of green cane trash blanket (GCTB) and bare soil (Bare). The variability of the stochastic simulation was quantified by the ratio between the mean standard deviation of the simulations and the mean standard deviation of the observed data. Subsequently, to better understand which factors caused greater uncertainty in the simulation process, a global sensitivity analysis (GSA) was performed using the extended Fourier Amplitude Sensitivity Test (eFAST) method for the same 4-year experiment, in order to identify which parameters were responsible for explaining the higher variance of the model and verifying the impact of the range of the chosen parameters, as well as the number of simulations necessary to have a reliable GSA. Finally, knowing that the environment can influence the GSA result, a new sensitivity analysis was carried out with two methods, eFAST and Partial Rank Correlation Coefficient (PRCC) for the main sugarcane-producing regions in Brazil, considering irrigated and rainfed conditions. The results indicated that the observed variability in the field is not fully explained by soil parameters, possibly due to irrigation and good rainfall distribution in the experimental area. The UG and the UGS had the same ability to quantify the variability present in the experimental field. In that case, sensitivity to soil parameters could simply be ignored and genotype parameters could be chosen as the sole source of variability for practical applications. Most of the uncertainty in this experiment is attributed to the plastochron parameter, however, it was identified that the parameter range set could influence the order of the most important parameters. This was observed when the analysis was carried out for two sets of different parameter intervals (the first set used maximum and minimum values reported in the literature; the second set applied a 25% perturbation to the previously calibrated values). Finally, out of 31 parameters, 24 genotype and 7 soil, only 13 parameters were significant, regardless of the output variable. In addition, the results were affected by climate: in environments with good rainfall distributionplastochron was the main parameter, while in environments subjected to greater water stress, the eff parameter was the most important. It was noted that any soil parameter was indifferent to irrigated conditions. In contrast, for rainfed conditions, field capacity and permanent wilting point were relevant in environments with low rainfall distribution and shallow soils. Rainy sites with deep soils also showed no sensitivity to soil parameters.
id USP_7efcaab24efd1109ebd5297cd0a9b74d
oai_identifier_str oai:teses.usp.br:tde-13042023-082447
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in BrazilAnálise de sensibilidade e incerteza do modelo SAMUCA em ambientes contrastantes no BrasilCana-de-açúcareFASTeFASTIncertezaPRCCPRCCSensibilidadeSensitivitySugarcaneUncertaintyThe Brazilian sugarcane industry is constantly developing, testing, and launching new cultivars and management practices to increase productivity. Due to climate change issues and limitations for expanding areas, farms are constantly pressured to increase agricultural efficiency. The use of process-based models (PBCM) to test cultivars and management options in different production environments is a reality and has been increasingly used. PBCMs are the state of the art in agricultural modeling and are increasingly complex, requiring several parameters to describe cultivation processes and boundary conditions. In general, PBCMs use the deterministic approach to simplify the uncertainty present in the environment using a single set of parameters. In practice, this uncertainty is seen in the variability of data collected in a field experiment, which is commonly represented by dispersion statistics such as standard deviation and variance. One way to explore this uncertainty is to use the stochastic approach, inserting a range of variability in the parameters and inputs of the simulation. This study aimed to use the stochastic approach to explore uncertainty and determine which parameters of the SAMUCA model are most influential in the simulation process. For this, the recent version of the SAMUCA model was used, inserting three uncertainty scenarios: uncertainty analysis only for genotype parameters (UG), uncertainty analysis only for soil parameters (US), and analysis of soil parameters and genotype (UGS). In this first stage, these three scenarios were simulated for a 4-year field experiment, with the crop cultivated under the effect of green cane trash blanket (GCTB) and bare soil (Bare). The variability of the stochastic simulation was quantified by the ratio between the mean standard deviation of the simulations and the mean standard deviation of the observed data. Subsequently, to better understand which factors caused greater uncertainty in the simulation process, a global sensitivity analysis (GSA) was performed using the extended Fourier Amplitude Sensitivity Test (eFAST) method for the same 4-year experiment, in order to identify which parameters were responsible for explaining the higher variance of the model and verifying the impact of the range of the chosen parameters, as well as the number of simulations necessary to have a reliable GSA. Finally, knowing that the environment can influence the GSA result, a new sensitivity analysis was carried out with two methods, eFAST and Partial Rank Correlation Coefficient (PRCC) for the main sugarcane-producing regions in Brazil, considering irrigated and rainfed conditions. The results indicated that the observed variability in the field is not fully explained by soil parameters, possibly due to irrigation and good rainfall distribution in the experimental area. The UG and the UGS had the same ability to quantify the variability present in the experimental field. In that case, sensitivity to soil parameters could simply be ignored and genotype parameters could be chosen as the sole source of variability for practical applications. Most of the uncertainty in this experiment is attributed to the plastochron parameter, however, it was identified that the parameter range set could influence the order of the most important parameters. This was observed when the analysis was carried out for two sets of different parameter intervals (the first set used maximum and minimum values reported in the literature; the second set applied a 25% perturbation to the previously calibrated values). Finally, out of 31 parameters, 24 genotype and 7 soil, only 13 parameters were significant, regardless of the output variable. In addition, the results were affected by climate: in environments with good rainfall distributionplastochron was the main parameter, while in environments subjected to greater water stress, the eff parameter was the most important. It was noted that any soil parameter was indifferent to irrigated conditions. In contrast, for rainfed conditions, field capacity and permanent wilting point were relevant in environments with low rainfall distribution and shallow soils. Rainy sites with deep soils also showed no sensitivity to soil parameters.A indústria canavieira brasileira está em constante desenvolvimento, testando e lançando novas cultivares e práticas de manejo para aumentar a produtividade. Devido às questões das mudanças climáticas e às limitações para expandir as áreas agrícolas, as fazendas brasileiras são constantemente pressionadas a aumentar a eficiência da produção. A utilização de modelos baseados em processos (PBCM) para testar cultivares e opções de manejo em diferentes ambientes de produção é uma realidade e vem sendo cada vez mais utilizada. Os PBCM são o estado da arte em modelagem agrícola e são cada vez mais complexos, requerendo diversos parâmetros para descrever os processos de cultivo e as condições de contorno. Em geral, os PBCM utilizam a abordagem determinística para simplificar a incerteza presente no ambiente usando um único conjunto de parâmetros. Na prática, essa incerteza é vista na variabilidade dos dados coletados em um experimento de campo, que são comumente representados por estatísticas de dispersão, como desvio padrão e variância. Uma maneira de explorar essa incerteza é usar a abordagem estocástica, inserindo uma faixa de variabilidade nos parâmetros e entradas da simulação. Este estudo teve como objetivo utilizar a abordagem estocástica para explorar a incerteza e determinar quais parâmetros do modelo SAMUCA são mais influentes no processo de simulação. Para isso foi utilizada a recente versão do modelo SAMUCA inserindo três cenários de incerteza: análise de incerteza apenas para parâmetros genéticos (UG), análise de incerteza apenas para parâmetros de solo (US) e análise de parâmetros de solo e genótipo (UGS). Nessa primeira etapa foram simulados esses três cenários para um experimento de campo de 4 anos, sendo a cultura cultivada sob efeito da palha (GCTB) e solo nu (Bare). A partir disso foi quantificado a variabilidade da simulação estocástica pela razão entre a média do desvio padrão das simulações e a média do desvio padrão dos dados observados. Posteriormente, para entender melhor quais os fatores que causam maior incerteza no processo de simulação foi relizada uma análise de sensibilidade global (GSA) pelo método extented Fourier Amplitude Sensitivity Test (eFAST) para o mesmo experimento de campo de 4 anos, visando a identificar quais parâmetros foram responsáveis por explicar a maior variância do modelo e verificar o impacto do intervalo dos parâmetros escolhidos, bem como o número de simulações necessárias para se ter uma GSA confiável. Por fim, sabendo que além do método, o ambiente pode influenciar o resultado da GSA, fez-se uma nova análise de sensibilidade com dois métodos , eFAST e Partial Rank Correlation Coefficient (PRCC) para as principais regiões produtoras de cana de açúcar no Brasil, considerando condições irrigadas e de sequeiro. Os resultados indicaram que a variabilidade observada no campo não é totalmente explicada pelos parâmetros do solo, possivelmente devido à irrigação e boa distribuição das chuvas na área experimental. A UG e a UGS tiveram a mesma capacidade de quantificar a variabilidade presente no campo experimental. Nesse caso, a sensibilidade aos parâmetros do solo poderia ser simplesmente ignorada e os parâmetros genéticos podem ser escolhidos como a única fonte de variabilidade para aplicações práticas. A maior parte da incerteza nesse experimento é atribuída ao parâmetro plastochron, porém identificou-se que o conjunto de intervalo dos parâmetros pode influenciar a ordem dos parâmetros mais importantes. Isso foi observado quando se realizou a análise para dois conjuntos de intervalos de parâmetros diferentes ( o primeiro conjunto usou valores máximos e mínimos relatados na literatura; o segundo conjunto aplicou uma perturbação de 25% nos valores previamente calibrados). Por fim, dos 31 parâmetros, 24 genéticos e 7 de solo, apenas 13 parâmetros foram significativos, independentemente da variável de saída. Além disso, os resultados foram afetados pelo clima: em ambientes com boa distribuição pluviométrica o plastochron foi o principal parâmetro, enquanto em ambientes submetidos a maior estresse hídrico, o parâmetro eff foi o mais importante. Notou-se que qualquer parâmetro do solo foi indiferente para as condições irrigadas, enquanto que para as condições de sequeiro, a capacidade de campo e o ponto de murcha permanente foram relevantes em ambientes com baixa distribuição de chuvas e solos rasos. Locais chuvosos com solos profundos também não apresentaram sensibilidade aos parâmetros do solo.Biblioteca Digitais de Teses e Dissertações da USPMarin, Fábio RicardoPereira, Rodolfo Armando de Almeida2023-02-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-13042023-082447/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-14T17:55:16Zoai:teses.usp.br:tde-13042023-082447Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-14T17:55:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
Análise de sensibilidade e incerteza do modelo SAMUCA em ambientes contrastantes no Brasil
title Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
spellingShingle Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
Pereira, Rodolfo Armando de Almeida
Cana-de-açúcar
eFAST
eFAST
Incerteza
PRCC
PRCC
Sensibilidade
Sensitivity
Sugarcane
Uncertainty
title_short Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
title_full Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
title_fullStr Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
title_full_unstemmed Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
title_sort Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting environments in Brazil
author Pereira, Rodolfo Armando de Almeida
author_facet Pereira, Rodolfo Armando de Almeida
author_role author
dc.contributor.none.fl_str_mv Marin, Fábio Ricardo
dc.contributor.author.fl_str_mv Pereira, Rodolfo Armando de Almeida
dc.subject.por.fl_str_mv Cana-de-açúcar
eFAST
eFAST
Incerteza
PRCC
PRCC
Sensibilidade
Sensitivity
Sugarcane
Uncertainty
topic Cana-de-açúcar
eFAST
eFAST
Incerteza
PRCC
PRCC
Sensibilidade
Sensitivity
Sugarcane
Uncertainty
description The Brazilian sugarcane industry is constantly developing, testing, and launching new cultivars and management practices to increase productivity. Due to climate change issues and limitations for expanding areas, farms are constantly pressured to increase agricultural efficiency. The use of process-based models (PBCM) to test cultivars and management options in different production environments is a reality and has been increasingly used. PBCMs are the state of the art in agricultural modeling and are increasingly complex, requiring several parameters to describe cultivation processes and boundary conditions. In general, PBCMs use the deterministic approach to simplify the uncertainty present in the environment using a single set of parameters. In practice, this uncertainty is seen in the variability of data collected in a field experiment, which is commonly represented by dispersion statistics such as standard deviation and variance. One way to explore this uncertainty is to use the stochastic approach, inserting a range of variability in the parameters and inputs of the simulation. This study aimed to use the stochastic approach to explore uncertainty and determine which parameters of the SAMUCA model are most influential in the simulation process. For this, the recent version of the SAMUCA model was used, inserting three uncertainty scenarios: uncertainty analysis only for genotype parameters (UG), uncertainty analysis only for soil parameters (US), and analysis of soil parameters and genotype (UGS). In this first stage, these three scenarios were simulated for a 4-year field experiment, with the crop cultivated under the effect of green cane trash blanket (GCTB) and bare soil (Bare). The variability of the stochastic simulation was quantified by the ratio between the mean standard deviation of the simulations and the mean standard deviation of the observed data. Subsequently, to better understand which factors caused greater uncertainty in the simulation process, a global sensitivity analysis (GSA) was performed using the extended Fourier Amplitude Sensitivity Test (eFAST) method for the same 4-year experiment, in order to identify which parameters were responsible for explaining the higher variance of the model and verifying the impact of the range of the chosen parameters, as well as the number of simulations necessary to have a reliable GSA. Finally, knowing that the environment can influence the GSA result, a new sensitivity analysis was carried out with two methods, eFAST and Partial Rank Correlation Coefficient (PRCC) for the main sugarcane-producing regions in Brazil, considering irrigated and rainfed conditions. The results indicated that the observed variability in the field is not fully explained by soil parameters, possibly due to irrigation and good rainfall distribution in the experimental area. The UG and the UGS had the same ability to quantify the variability present in the experimental field. In that case, sensitivity to soil parameters could simply be ignored and genotype parameters could be chosen as the sole source of variability for practical applications. Most of the uncertainty in this experiment is attributed to the plastochron parameter, however, it was identified that the parameter range set could influence the order of the most important parameters. This was observed when the analysis was carried out for two sets of different parameter intervals (the first set used maximum and minimum values reported in the literature; the second set applied a 25% perturbation to the previously calibrated values). Finally, out of 31 parameters, 24 genotype and 7 soil, only 13 parameters were significant, regardless of the output variable. In addition, the results were affected by climate: in environments with good rainfall distributionplastochron was the main parameter, while in environments subjected to greater water stress, the eff parameter was the most important. It was noted that any soil parameter was indifferent to irrigated conditions. In contrast, for rainfed conditions, field capacity and permanent wilting point were relevant in environments with low rainfall distribution and shallow soils. Rainy sites with deep soils also showed no sensitivity to soil parameters.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11152/tde-13042023-082447/
url https://www.teses.usp.br/teses/disponiveis/11/11152/tde-13042023-082447/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257007853142016