Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/96/96132/tde-04112014-165830/ |
Resumo: | Os modelos de análise e decisão de concessão de crédito buscam associar o perfil do tomador de crédito à probabilidade do não pagamento de obrigações contraídas, identificando assim o risco associado ao tomador e auxiliando a firma a decidir pela aprovação ou negação da solicitação de crédito. Atualmente este campo de pesquisa tem ganhado importância no cenário nacional - pela intensificação da atividade de crédito no país com grande participação dos bancos públicos neste processo - e internacional - pelo aumento das preocupações com potenciais danos à economia derivados de eventos de default. Tal quadro fez com que fossem construídos e adaptados diversos modelos e métodos à análise de risco de crédito tanto para consumidores como para empresas. Estes modelos são testados e comparados com base na acurácia de previsão ou de métricas de otimização estatística. Este é um procedimento que pode não se mostrar eficiente do ponto de vista financeiro, ao mesmo tempo em que dificulta a interpretação e tomada de decisão por parte da firma quanto a qual o melhor modelo, gerando uma lacuna pelo desprendimento observado entre a decisão de qual o modelo a ser adotado e o objetivo financeiro da empresa. Tendo em vista que o desempenho financeiro é um dos principais indicadores de qualquer procedimento gerencial, o presente estudo objetivou preencher a esta lacuna analisando o desempenho financeiro de carteiras de crédito formadas por técnicas de aprendizagem estatística utilizadas atualmente na classificação e análise de risco de crédito em pesquisas nacionais e internacionais. A pesquisa selecionou as técnicas: análise discriminante, regressão logística, redes bayesianas Naïve Bayes, kdB-1, kdB-2, SVC e SVM e aplicou tais técnicas junto à base de dados German Credit Data Set. Os resultados foram analisados e comparados inicialmente em termos de acurácia e custos por erro de classificação. Adicionalmente a pesquisa propôs o emprego de quatro métricas financeiras (RFC, PLR, RAROC e IS), encontrando variações quanto aos resultados produzidos por cada técnica. Estes resultados sugerem variações quanto a sequência de eficiência e consequentemente de emprego das técnicas, demonstrando a importância da consideração destas métricas para a análise e decisão de seleção de modelos de classificação ótimos. |
id |
USP_7f2ab11428a1d28b5fa23dcacc45500c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04112014-165830 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatísticaFinancial performance portfolio to evaluate and select analyses and credit models: An approach based on Statistical LearningAprendizagem EstatísticaClassificadoresClassifiersCredit riskDesempenho FinanceiroFinancial PerformanceRisco de créditoStatistical LearningOs modelos de análise e decisão de concessão de crédito buscam associar o perfil do tomador de crédito à probabilidade do não pagamento de obrigações contraídas, identificando assim o risco associado ao tomador e auxiliando a firma a decidir pela aprovação ou negação da solicitação de crédito. Atualmente este campo de pesquisa tem ganhado importância no cenário nacional - pela intensificação da atividade de crédito no país com grande participação dos bancos públicos neste processo - e internacional - pelo aumento das preocupações com potenciais danos à economia derivados de eventos de default. Tal quadro fez com que fossem construídos e adaptados diversos modelos e métodos à análise de risco de crédito tanto para consumidores como para empresas. Estes modelos são testados e comparados com base na acurácia de previsão ou de métricas de otimização estatística. Este é um procedimento que pode não se mostrar eficiente do ponto de vista financeiro, ao mesmo tempo em que dificulta a interpretação e tomada de decisão por parte da firma quanto a qual o melhor modelo, gerando uma lacuna pelo desprendimento observado entre a decisão de qual o modelo a ser adotado e o objetivo financeiro da empresa. Tendo em vista que o desempenho financeiro é um dos principais indicadores de qualquer procedimento gerencial, o presente estudo objetivou preencher a esta lacuna analisando o desempenho financeiro de carteiras de crédito formadas por técnicas de aprendizagem estatística utilizadas atualmente na classificação e análise de risco de crédito em pesquisas nacionais e internacionais. A pesquisa selecionou as técnicas: análise discriminante, regressão logística, redes bayesianas Naïve Bayes, kdB-1, kdB-2, SVC e SVM e aplicou tais técnicas junto à base de dados German Credit Data Set. Os resultados foram analisados e comparados inicialmente em termos de acurácia e custos por erro de classificação. Adicionalmente a pesquisa propôs o emprego de quatro métricas financeiras (RFC, PLR, RAROC e IS), encontrando variações quanto aos resultados produzidos por cada técnica. Estes resultados sugerem variações quanto a sequência de eficiência e consequentemente de emprego das técnicas, demonstrando a importância da consideração destas métricas para a análise e decisão de seleção de modelos de classificação ótimos.Analysis and decision credit concession models search for relating the borrower\'s credit profile to the nonpayment probability of their obligations, identifying risks related to borrower and helping decision firm to approve or deny the credit request. Currently this search field has increased in Brazilian scenario - by credit activity intensification into the country with a large public banks sharing - and in the international scenario - by growing concerns about economy potential damages resulting from default events. This position leads the construction and adaptation of several models and methods by credit risk analysis from both consumers and companies. These models have been tested and compared based on prediction of accuracy or other statistical optimization metrics. This proceed is eventually not effective when analyzed by a financial standpoint, in the same time that affects the understanding and decision of the enterprise about the best model, creating a gap in the decision model choice and the firm financial goals. Given that the financial performance is a foremost indicator of any management procedure, this study aimed to address this gap by the financial performance analysis of loan portfolios formed by statistical learning techniques currently used in the classification and credit risk analysis in national and international researches. The selected techniques (discriminant analysis, logistic regression, Bayesian networks Naïve Bayes , 1 - KDB , KDB - 2 , SVC and SVM) were applied to the German Credit Data Set and their results were initially analyzed and compared in terms of accuracy and misclassification costs. Regardless of these metrics the research has proposed to use four financial metrics (RFC, PLR, RAROC and IS), finding variations in the results of each statistical learning techniques. These results suggest variations in the sequence of efficiency and, ultimately, techniques choice, demonstrating the importance of considering these metrics for analysis and selection of decision models of optimal classification.Biblioteca Digitais de Teses e Dissertações da USPRibeiro, Evandro Marcos SaidelSilva, Rodrigo Alves2014-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/96/96132/tde-04112014-165830/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-04112014-165830Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística Financial performance portfolio to evaluate and select analyses and credit models: An approach based on Statistical Learning |
title |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
spellingShingle |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística Silva, Rodrigo Alves Aprendizagem Estatística Classificadores Classifiers Credit risk Desempenho Financeiro Financial Performance Risco de crédito Statistical Learning |
title_short |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
title_full |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
title_fullStr |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
title_full_unstemmed |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
title_sort |
Performance financeira da carteira na avaliação de modelos de análise e concessão de crédito: uma abordagem baseada em aprendizagem estatística |
author |
Silva, Rodrigo Alves |
author_facet |
Silva, Rodrigo Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ribeiro, Evandro Marcos Saidel |
dc.contributor.author.fl_str_mv |
Silva, Rodrigo Alves |
dc.subject.por.fl_str_mv |
Aprendizagem Estatística Classificadores Classifiers Credit risk Desempenho Financeiro Financial Performance Risco de crédito Statistical Learning |
topic |
Aprendizagem Estatística Classificadores Classifiers Credit risk Desempenho Financeiro Financial Performance Risco de crédito Statistical Learning |
description |
Os modelos de análise e decisão de concessão de crédito buscam associar o perfil do tomador de crédito à probabilidade do não pagamento de obrigações contraídas, identificando assim o risco associado ao tomador e auxiliando a firma a decidir pela aprovação ou negação da solicitação de crédito. Atualmente este campo de pesquisa tem ganhado importância no cenário nacional - pela intensificação da atividade de crédito no país com grande participação dos bancos públicos neste processo - e internacional - pelo aumento das preocupações com potenciais danos à economia derivados de eventos de default. Tal quadro fez com que fossem construídos e adaptados diversos modelos e métodos à análise de risco de crédito tanto para consumidores como para empresas. Estes modelos são testados e comparados com base na acurácia de previsão ou de métricas de otimização estatística. Este é um procedimento que pode não se mostrar eficiente do ponto de vista financeiro, ao mesmo tempo em que dificulta a interpretação e tomada de decisão por parte da firma quanto a qual o melhor modelo, gerando uma lacuna pelo desprendimento observado entre a decisão de qual o modelo a ser adotado e o objetivo financeiro da empresa. Tendo em vista que o desempenho financeiro é um dos principais indicadores de qualquer procedimento gerencial, o presente estudo objetivou preencher a esta lacuna analisando o desempenho financeiro de carteiras de crédito formadas por técnicas de aprendizagem estatística utilizadas atualmente na classificação e análise de risco de crédito em pesquisas nacionais e internacionais. A pesquisa selecionou as técnicas: análise discriminante, regressão logística, redes bayesianas Naïve Bayes, kdB-1, kdB-2, SVC e SVM e aplicou tais técnicas junto à base de dados German Credit Data Set. Os resultados foram analisados e comparados inicialmente em termos de acurácia e custos por erro de classificação. Adicionalmente a pesquisa propôs o emprego de quatro métricas financeiras (RFC, PLR, RAROC e IS), encontrando variações quanto aos resultados produzidos por cada técnica. Estes resultados sugerem variações quanto a sequência de eficiência e consequentemente de emprego das técnicas, demonstrando a importância da consideração destas métricas para a análise e decisão de seleção de modelos de classificação ótimos. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/96/96132/tde-04112014-165830/ |
url |
http://www.teses.usp.br/teses/disponiveis/96/96132/tde-04112014-165830/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256676150804480 |