Modelos aditivos binomiais negativos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-132153/ |
Resumo: | Os modelos lineares generalizados (MLG) são uma ampla classe de modelos de regressão. No entanto, as suposições impostas por esses modelos não são adequadas, por exemplo, para a análise de dados de contagem superdispersos. Um dos modelos de superdispersão muito utilizado é o modelo de regressão binomial negativo. Se um certo parâmetro desse modelo é conhecido, ele faz parte da classe dos MLG¦s. No entanto, a suposição de que tal parâmetro é conhecido é geralmente irreal e métodos adequados de inferência nesses modelos estão descritos na literatura. Os MLG¦s impõem uma restrição adicional: uma função estritamente monótona da resposta média, a função de ligação, deve estar relacionada a um preditor linear, que envolve parâmetros desconhecidos e as covariáveis. Os modelos aditivos generalizados (MAG) estendem a classe dos MLG¦s permitindo não linearidade na relação entre uma função da resposta média e as covariáveis, que é modelada através de funções alisadoras não especificadas. Embora MAG¦s constituam uma classe mais ampla que os MLG¦s, eles também não são adequados para a análise de contagens superdispersas. Recentemente, os MAG¦s foram estendidos para englobar respostas binomiais negativas. Nessa dissertação apresentamos esta extensão e sua implementação computacional. Apresentamos também uma aplicação desse modelo a dados reais, com ênfase no estudo da relação entre poluição atmosférica e saúde humana na cidade de São Paulo |
id |
USP_81a83aab69625819130a28f096da371d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-132153 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos aditivos binomiais negativosnot availableInferência EstatísticaOs modelos lineares generalizados (MLG) são uma ampla classe de modelos de regressão. No entanto, as suposições impostas por esses modelos não são adequadas, por exemplo, para a análise de dados de contagem superdispersos. Um dos modelos de superdispersão muito utilizado é o modelo de regressão binomial negativo. Se um certo parâmetro desse modelo é conhecido, ele faz parte da classe dos MLG¦s. No entanto, a suposição de que tal parâmetro é conhecido é geralmente irreal e métodos adequados de inferência nesses modelos estão descritos na literatura. Os MLG¦s impõem uma restrição adicional: uma função estritamente monótona da resposta média, a função de ligação, deve estar relacionada a um preditor linear, que envolve parâmetros desconhecidos e as covariáveis. Os modelos aditivos generalizados (MAG) estendem a classe dos MLG¦s permitindo não linearidade na relação entre uma função da resposta média e as covariáveis, que é modelada através de funções alisadoras não especificadas. Embora MAG¦s constituam uma classe mais ampla que os MLG¦s, eles também não são adequados para a análise de contagens superdispersas. Recentemente, os MAG¦s foram estendidos para englobar respostas binomiais negativas. Nessa dissertação apresentamos esta extensão e sua implementação computacional. Apresentamos também uma aplicação desse modelo a dados reais, com ênfase no estudo da relação entre poluição atmosférica e saúde humana na cidade de São Paulonot availableBiblioteca Digitais de Teses e Dissertações da USPFerrari, Sílvia Lopes de PaulaPlanas, Jacqueline Sant' Eufemia David2003-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-132153/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T12:30:02Zoai:teses.usp.br:tde-20210729-132153Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T12:30:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos aditivos binomiais negativos not available |
title |
Modelos aditivos binomiais negativos |
spellingShingle |
Modelos aditivos binomiais negativos Planas, Jacqueline Sant' Eufemia David Inferência Estatística |
title_short |
Modelos aditivos binomiais negativos |
title_full |
Modelos aditivos binomiais negativos |
title_fullStr |
Modelos aditivos binomiais negativos |
title_full_unstemmed |
Modelos aditivos binomiais negativos |
title_sort |
Modelos aditivos binomiais negativos |
author |
Planas, Jacqueline Sant' Eufemia David |
author_facet |
Planas, Jacqueline Sant' Eufemia David |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferrari, Sílvia Lopes de Paula |
dc.contributor.author.fl_str_mv |
Planas, Jacqueline Sant' Eufemia David |
dc.subject.por.fl_str_mv |
Inferência Estatística |
topic |
Inferência Estatística |
description |
Os modelos lineares generalizados (MLG) são uma ampla classe de modelos de regressão. No entanto, as suposições impostas por esses modelos não são adequadas, por exemplo, para a análise de dados de contagem superdispersos. Um dos modelos de superdispersão muito utilizado é o modelo de regressão binomial negativo. Se um certo parâmetro desse modelo é conhecido, ele faz parte da classe dos MLG¦s. No entanto, a suposição de que tal parâmetro é conhecido é geralmente irreal e métodos adequados de inferência nesses modelos estão descritos na literatura. Os MLG¦s impõem uma restrição adicional: uma função estritamente monótona da resposta média, a função de ligação, deve estar relacionada a um preditor linear, que envolve parâmetros desconhecidos e as covariáveis. Os modelos aditivos generalizados (MAG) estendem a classe dos MLG¦s permitindo não linearidade na relação entre uma função da resposta média e as covariáveis, que é modelada através de funções alisadoras não especificadas. Embora MAG¦s constituam uma classe mais ampla que os MLG¦s, eles também não são adequados para a análise de contagens superdispersas. Recentemente, os MAG¦s foram estendidos para englobar respostas binomiais negativas. Nessa dissertação apresentamos esta extensão e sua implementação computacional. Apresentamos também uma aplicação desse modelo a dados reais, com ênfase no estudo da relação entre poluição atmosférica e saúde humana na cidade de São Paulo |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-04-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-132153/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-132153/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208820072448 |