Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada

Detalhes bibliográficos
Autor(a) principal: Guimarães, Andréa Gomes
Data de Publicação: 2005
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26112014-144207/
Resumo: Neste trabalho estudamos algumas raízes do polinômio de Bernstein bf associado a um germe f(X) ∈ ℂ{X1,. . . , Xn} com ponto crítico isolado na origem. Sabe-se que, para cada raiz de bf, existe um número espectral tal que a soma desses dois números é um inteiro. Em geral, não se sabe exibir explicitamente esses números inteiros, embora existam cotas para eles. M. Saito [Sai93] exibe um subconjunto do conjunto das raízes de bf tal que para esses elementos a soma vale -1. Hertling e Stahlkc [IIS99] conseguiram aumentar esse subconjunto de raízes, supondo f(X) em duas variáveis, com ponto crítico isolado e monodromia finita (hipóteses essas bem restritivas). Conseguimos estender esse último resultado, sem restrições sobre o número de variáveis de, f{X) e apenas com a hipótese de ponto crítico isolado. Além disso, no caso de germes f(X1, X2) irredutíveis e com um único par de Puiseux, mostramos como descrever um subconjunto maior de raízes de bf, quando f pertence a uma dada classe de equidiferenciabilidade.
id USP_829b21e768cb758583b8bd24d8143f6a
oai_identifier_str oai:teses.usp.br:tde-26112014-144207
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isoladaBerstein-Sato polynomial of an hypersurface with isolated singularityNão disponívelNot availableNeste trabalho estudamos algumas raízes do polinômio de Bernstein bf associado a um germe f(X) ∈ ℂ{X1,. . . , Xn} com ponto crítico isolado na origem. Sabe-se que, para cada raiz de bf, existe um número espectral tal que a soma desses dois números é um inteiro. Em geral, não se sabe exibir explicitamente esses números inteiros, embora existam cotas para eles. M. Saito [Sai93] exibe um subconjunto do conjunto das raízes de bf tal que para esses elementos a soma vale -1. Hertling e Stahlkc [IIS99] conseguiram aumentar esse subconjunto de raízes, supondo f(X) em duas variáveis, com ponto crítico isolado e monodromia finita (hipóteses essas bem restritivas). Conseguimos estender esse último resultado, sem restrições sobre o número de variáveis de, f{X) e apenas com a hipótese de ponto crítico isolado. Além disso, no caso de germes f(X1, X2) irredutíveis e com um único par de Puiseux, mostramos como descrever um subconjunto maior de raízes de bf, quando f pertence a uma dada classe de equidiferenciabilidade.In this work we studv some roots of the Bernstein polynomial bf associated to a germ f(X) in the maximal ideal of ℂ{X1,. . . , Xn} with an isolated criticai point at the origin. It is known that for each root of bf there exists a spectral number such that the sum of these two nurnber is an integer. In general, one doesn\'t. know how to compute explicitly these integers, although there are bounds on them. M. Sai to, in [Sai93], exhibits a subset of the set of roots of bf, such that, for these elements the sum is -1. Heríling and Stahlke, in [HS99], succeeded to increase this subset of roots, assuming f(X) in two variables, with isolated criticai point and finito monodrorny (such hypotheses are very restrictive). We succeeded to extend this last result without any restriction on the number of variables of f(X) and only with the assumption of isolated criticai point. Moreover, in the case of irreducible germs f(X1, X2) with only one Puiseux pair, we show how to describe a. larger subset of roots of bf, when f belongs to a given equidiferentiability class.Biblioteca Digitais de Teses e Dissertações da USPHefez, AbramoLevcovitz, DanielGuimarães, Andréa Gomes2005-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-26112014-144207/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-26112014-144207Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
Berstein-Sato polynomial of an hypersurface with isolated singularity
title Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
spellingShingle Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
Guimarães, Andréa Gomes
Não disponível
Not available
title_short Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
title_full Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
title_fullStr Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
title_full_unstemmed Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
title_sort Polinômio de Bernstein-Sato de uma hipersuperfície com singularidade isolada
author Guimarães, Andréa Gomes
author_facet Guimarães, Andréa Gomes
author_role author
dc.contributor.none.fl_str_mv Hefez, Abramo
Levcovitz, Daniel
dc.contributor.author.fl_str_mv Guimarães, Andréa Gomes
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Neste trabalho estudamos algumas raízes do polinômio de Bernstein bf associado a um germe f(X) ∈ ℂ{X1,. . . , Xn} com ponto crítico isolado na origem. Sabe-se que, para cada raiz de bf, existe um número espectral tal que a soma desses dois números é um inteiro. Em geral, não se sabe exibir explicitamente esses números inteiros, embora existam cotas para eles. M. Saito [Sai93] exibe um subconjunto do conjunto das raízes de bf tal que para esses elementos a soma vale -1. Hertling e Stahlkc [IIS99] conseguiram aumentar esse subconjunto de raízes, supondo f(X) em duas variáveis, com ponto crítico isolado e monodromia finita (hipóteses essas bem restritivas). Conseguimos estender esse último resultado, sem restrições sobre o número de variáveis de, f{X) e apenas com a hipótese de ponto crítico isolado. Além disso, no caso de germes f(X1, X2) irredutíveis e com um único par de Puiseux, mostramos como descrever um subconjunto maior de raízes de bf, quando f pertence a uma dada classe de equidiferenciabilidade.
publishDate 2005
dc.date.none.fl_str_mv 2005-04-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26112014-144207/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26112014-144207/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257387538317312