Transfer Parcial para Extensões de Grupos Dualidades

Detalhes bibliográficos
Autor(a) principal: Franco, Valdeni Soliani
Data de Publicação: 1998
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032018-095720/
Resumo: Desde que o conceito de Grupos Dualidades de Poincaré foi criado, muitos esforços tem sido feito com a finalidade de estudar as propriedades geométricas de uma variedade fechada nesta nova categoria. Isto é natural, pois um Grupo Dualidade de Poincaré tem sua homologia e cohomologia conectada por um isomorfismo semelhante ao isomorfismo Dualidade Poincaré para variedades compactas. Produtos semelhantes ao cup e cap, operaçrios quadrados de Steenrod, Teorema dos Coeficientes Universais também podem ser definidos para Grupos Dualidade de Poincaré. Da mesma maneira as classes de Stiefel-Whitney, números de Stiefel- Whitney e a noção de cobordismo de Grupos Dualidade de Poincaré pode ser definido, e desde que estas propriedades são essencialmente algébricas, os resultados nesta direção não são novos. Apenas como complemento nós demonstraremos aqui propriedades multiplicativos do índice de \"fibrações\" (sob certas hipóteses) e damos contra-exemplos semelhantes aos dados por Atiyah e Kodaira. O centro deste trabalho é o Teorema de Transfer Parcial de Gotllieb. Sua demonstração utiliza propriedades geométricas refinadas de variedades, que não tem similares para Grupos Dualidades de Poincaré. Graças a sequência espectral de LHS, nós apresentamos aqui uma demonstração do Teorema de Transfer Parcial para uma sequência exata curta: N →i G →π Q de Grupos Dualidades de Poincaré e damos algumas aplicações.
id USP_84f9566cab262be7cc9197306916c744
oai_identifier_str oai:teses.usp.br:tde-19032018-095720
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Transfer Parcial para Extensões de Grupos DualidadesNot availableNão disponívelNot availableDesde que o conceito de Grupos Dualidades de Poincaré foi criado, muitos esforços tem sido feito com a finalidade de estudar as propriedades geométricas de uma variedade fechada nesta nova categoria. Isto é natural, pois um Grupo Dualidade de Poincaré tem sua homologia e cohomologia conectada por um isomorfismo semelhante ao isomorfismo Dualidade Poincaré para variedades compactas. Produtos semelhantes ao cup e cap, operaçrios quadrados de Steenrod, Teorema dos Coeficientes Universais também podem ser definidos para Grupos Dualidade de Poincaré. Da mesma maneira as classes de Stiefel-Whitney, números de Stiefel- Whitney e a noção de cobordismo de Grupos Dualidade de Poincaré pode ser definido, e desde que estas propriedades são essencialmente algébricas, os resultados nesta direção não são novos. Apenas como complemento nós demonstraremos aqui propriedades multiplicativos do índice de \"fibrações\" (sob certas hipóteses) e damos contra-exemplos semelhantes aos dados por Atiyah e Kodaira. O centro deste trabalho é o Teorema de Transfer Parcial de Gotllieb. Sua demonstração utiliza propriedades geométricas refinadas de variedades, que não tem similares para Grupos Dualidades de Poincaré. Graças a sequência espectral de LHS, nós apresentamos aqui uma demonstração do Teorema de Transfer Parcial para uma sequência exata curta: N →i G →π Q de Grupos Dualidades de Poincaré e damos algumas aplicações.Since the concept of Poincaré Duality Groups was areated, many efforts has been done in order to study the geometrical properties of a closed manifold, in this new category. This is natural because a Poincaré Duality Group has its homology and cohomology connected by an isomorfism like the Poincaré Duality isomorphism for compact manifolds. Products like the cup and cap product, Steenrod square operations, universal coeficient theorems can also be defmed for Poincaré Duality Groups. In this way Stiefel- Whitney classes, Stiefel Whitney numbers and the notion of cobordism of Poincaré Duality Groups can be naturally established. Also the notion of index of Poincaré Duality Group can be defined, and since its properties are essentially algebraic, the results in this direction would not be new. For completness we prove here the multiplicative property of the index for \"fibrations\" (under cetain hipothesis) and we give counter-examples like the ones given by Atiyah and Kodaira. The core of this work is the Partia] Transfer Theorem of Gotllieb. Ris proof uses deep geometrical properties of manifolds, still without similar for Poincaré Duality Groups. Thanks for LHS spectral sequence we present here a proof of the Partia] \'Pransfer Theorem for a short exact sequence: N →i G →π Q of Poincaré Duality Groups and some applications is given.Biblioteca Digitais de Teses e Dissertações da USPDaccach, Janey AntonioFranco, Valdeni Soliani1998-06-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032018-095720/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-19032018-095720Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Transfer Parcial para Extensões de Grupos Dualidades
Not available
title Transfer Parcial para Extensões de Grupos Dualidades
spellingShingle Transfer Parcial para Extensões de Grupos Dualidades
Franco, Valdeni Soliani
Não disponível
Not available
title_short Transfer Parcial para Extensões de Grupos Dualidades
title_full Transfer Parcial para Extensões de Grupos Dualidades
title_fullStr Transfer Parcial para Extensões de Grupos Dualidades
title_full_unstemmed Transfer Parcial para Extensões de Grupos Dualidades
title_sort Transfer Parcial para Extensões de Grupos Dualidades
author Franco, Valdeni Soliani
author_facet Franco, Valdeni Soliani
author_role author
dc.contributor.none.fl_str_mv Daccach, Janey Antonio
dc.contributor.author.fl_str_mv Franco, Valdeni Soliani
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Desde que o conceito de Grupos Dualidades de Poincaré foi criado, muitos esforços tem sido feito com a finalidade de estudar as propriedades geométricas de uma variedade fechada nesta nova categoria. Isto é natural, pois um Grupo Dualidade de Poincaré tem sua homologia e cohomologia conectada por um isomorfismo semelhante ao isomorfismo Dualidade Poincaré para variedades compactas. Produtos semelhantes ao cup e cap, operaçrios quadrados de Steenrod, Teorema dos Coeficientes Universais também podem ser definidos para Grupos Dualidade de Poincaré. Da mesma maneira as classes de Stiefel-Whitney, números de Stiefel- Whitney e a noção de cobordismo de Grupos Dualidade de Poincaré pode ser definido, e desde que estas propriedades são essencialmente algébricas, os resultados nesta direção não são novos. Apenas como complemento nós demonstraremos aqui propriedades multiplicativos do índice de \"fibrações\" (sob certas hipóteses) e damos contra-exemplos semelhantes aos dados por Atiyah e Kodaira. O centro deste trabalho é o Teorema de Transfer Parcial de Gotllieb. Sua demonstração utiliza propriedades geométricas refinadas de variedades, que não tem similares para Grupos Dualidades de Poincaré. Graças a sequência espectral de LHS, nós apresentamos aqui uma demonstração do Teorema de Transfer Parcial para uma sequência exata curta: N →i G →π Q de Grupos Dualidades de Poincaré e damos algumas aplicações.
publishDate 1998
dc.date.none.fl_str_mv 1998-06-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032018-095720/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032018-095720/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257164074188800