Empacotamento de bicliques em grafos bipartidos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-161435/ |
Resumo: | Nesta tese, estudamos o problema de Empacotamento de Bicliques. Um biclique é um grafo bipartido completo. No problema de Empacotamento de Bicliques são dados um inteiro k e um grafo bipartido G e deseja-se encontrar um conjunto de k bicliques, subgrafos de G, dois a dois disjuntos nos vértices, tal que a quantidade total de arestas dos bicliques escolhidos seja máxima. No caso em que k=1, temos o problema de Biclique máximo. Esses dois problemas possuem aplicações na área de Bioinformática. Mantemos neste trabalho um enfoque prático, no sentido de que nosso interesse é resolver instâncias desses dois problemas com tamanho razoavelmente grande. Para isso, utilizamos técnicas de Programação Linear Inteira. Para avaliar os métodos propostos aqui, mostramos resultados de experimentos computacionais feitos com instâncias vindas de aplicações e também com instâncias geradas aleatoriamente. |
id |
USP_861f38c5d639381769efbaa1c4537f0a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26112012-161435 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Empacotamento de bicliques em grafos bipartidosBiclique packing in bipartite graphsbiclique máximobiclique packingcolumn generationempacotamento de bicliquesgeração de colunasinteger programmingmaximum bicliqueprogramação inteiraNesta tese, estudamos o problema de Empacotamento de Bicliques. Um biclique é um grafo bipartido completo. No problema de Empacotamento de Bicliques são dados um inteiro k e um grafo bipartido G e deseja-se encontrar um conjunto de k bicliques, subgrafos de G, dois a dois disjuntos nos vértices, tal que a quantidade total de arestas dos bicliques escolhidos seja máxima. No caso em que k=1, temos o problema de Biclique máximo. Esses dois problemas possuem aplicações na área de Bioinformática. Mantemos neste trabalho um enfoque prático, no sentido de que nosso interesse é resolver instâncias desses dois problemas com tamanho razoavelmente grande. Para isso, utilizamos técnicas de Programação Linear Inteira. Para avaliar os métodos propostos aqui, mostramos resultados de experimentos computacionais feitos com instâncias vindas de aplicações e também com instâncias geradas aleatoriamente.In this thesis, we study the Biclique Packing problem. A biclique is a complete bipartite graph. In the Biclique Packing problem we are given an integer k and a bipartite graph G and we want to find a set of k vertex disjoint bicliques of G, such that the total number of biclique\'s edges is maximum. When k=1, we have the Maximum Biclique problem. These two problems have applications in Bioinformatics. In this work we keep a practical focus, in the sense that we are interested in solving large size instances of these problems. To tackle these problems, we use Integer Linear Programming techniques. In order to evaluate the methods proposed here, we show results of computational experiments carried out with practical application\'s instances and also with randomly generated ones.Biblioteca Digitais de Teses e Dissertações da USPFerreira, Carlos EduardoFreire, Alexandre da Silva2012-10-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-161435/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:34Zoai:teses.usp.br:tde-26112012-161435Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:34Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Empacotamento de bicliques em grafos bipartidos Biclique packing in bipartite graphs |
title |
Empacotamento de bicliques em grafos bipartidos |
spellingShingle |
Empacotamento de bicliques em grafos bipartidos Freire, Alexandre da Silva biclique máximo biclique packing column generation empacotamento de bicliques geração de colunas integer programming maximum biclique programação inteira |
title_short |
Empacotamento de bicliques em grafos bipartidos |
title_full |
Empacotamento de bicliques em grafos bipartidos |
title_fullStr |
Empacotamento de bicliques em grafos bipartidos |
title_full_unstemmed |
Empacotamento de bicliques em grafos bipartidos |
title_sort |
Empacotamento de bicliques em grafos bipartidos |
author |
Freire, Alexandre da Silva |
author_facet |
Freire, Alexandre da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Carlos Eduardo |
dc.contributor.author.fl_str_mv |
Freire, Alexandre da Silva |
dc.subject.por.fl_str_mv |
biclique máximo biclique packing column generation empacotamento de bicliques geração de colunas integer programming maximum biclique programação inteira |
topic |
biclique máximo biclique packing column generation empacotamento de bicliques geração de colunas integer programming maximum biclique programação inteira |
description |
Nesta tese, estudamos o problema de Empacotamento de Bicliques. Um biclique é um grafo bipartido completo. No problema de Empacotamento de Bicliques são dados um inteiro k e um grafo bipartido G e deseja-se encontrar um conjunto de k bicliques, subgrafos de G, dois a dois disjuntos nos vértices, tal que a quantidade total de arestas dos bicliques escolhidos seja máxima. No caso em que k=1, temos o problema de Biclique máximo. Esses dois problemas possuem aplicações na área de Bioinformática. Mantemos neste trabalho um enfoque prático, no sentido de que nosso interesse é resolver instâncias desses dois problemas com tamanho razoavelmente grande. Para isso, utilizamos técnicas de Programação Linear Inteira. Para avaliar os métodos propostos aqui, mostramos resultados de experimentos computacionais feitos com instâncias vindas de aplicações e também com instâncias geradas aleatoriamente. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-161435/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26112012-161435/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257386989912064 |