Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data

Detalhes bibliográficos
Autor(a) principal: Lima, Bruno Marco de
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-25062014-085814/
Resumo: Convergence of quantitative genetics and genomics is becoming the way that fundamental genetics and applied breeding will be carried out in the next decades. This study bridges the quantitative genetics of complex growth and wood properties traits with genomic technologies towards a more innovative approach to tree breeding. Planted forests play a major role to fulfill the growing world demand for wood products and energy. Eucalypts stand out for their high productivity and versatile wood resulting from the advanced breeding programs associated to clonal propagation and modern silviculture. Despite their fast growth, breeding cycles still take several years and wood properties assessment is limited to a sample of trees in the late stages of selection due to the costs involved in wood phenotyping, not exploitingthe range of genetic variation in wood properties. In this study, we examined fifteen traits including growth and wood chemical and physical properties in 1,000 individuals sampled from an elite Eucalyptus breeding population. Near-infrared spectroscopy (NIRS) models were developed and used for high-throughput phenotyping of wood traits.Highdensity data for 29,090 SNPs was used to obtain accurate pedigree-record-free estimates of trait variance components, heritabilities, genetic and phenotypic correlations, based on a realized relationship matrix, comparing them to pedigree-based estimates. To the best of our knowledge, this is the first study to do this in plants. NIRS predictions were accurate for wood chemical traits and wood density, and variably successful for physical traits. Heritabilities were medium for growth (0.34 to 0.44), high for wood chemical traits (0.56 to 0.85) and variable for wood physical traits (0.11 to 0.63). High positive correlations among growth traits and negative between cellulose and lignin content were observed, while correlations between wood chemical and physical traits and between growth and wood quality traits were low although significant. Phenotypes and SNP markers were then used to build genomic predictive models using a marker density higher than any previous genomic selection study in trees (1 SNP/21 kbp). Two models (RR-BLUP and Bayesian LASSO) that differ regarding the assumed distribution of marker effects were used for genomic predictions. Predictions were compared to those obtained by phenotypic BLUP. Predictive abilities very similar by the two models and strongly correlated to the heritabilities. Accurate genomic-enabled predictions were obtained for wood chemical traits related to lignin, wood density and growth, although generally 15 to 25% lower than those achieved by phenotypic BLUP prediction. Nevertheless, genomic predictions yielded a coincidence above 70% in selecting the top 30 trees ranked by phenotypic selection for growth, wood density and S:G ratio, and 60% when tandem selection was applied. The results of this study open opportunities for an increased use of highthroughput NIRS phenotyping and genome-wide SNP genotyping in Eucalyptus breeding, allowing accurate pedigree-record-free estimation of genetic parameters and prediction of genomic breeding values for yet to be phenotyped trees. These applications should become routine in tree breeding programs for the years to come, significantly reducing the length of breeding cycles while optimizing resource allocation and sustainability of the breeding endeavor.
id USP_87506fe7fe8d741a20e28a2e90d2100f
oai_identifier_str oai:teses.usp.br:tde-25062014-085814
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP dataConectando a genômica à genética quantitativa de Eucalyptus: predição genômica e estimação de parâmetros genéticos para crescimento e propriedades de madeira usando alta densidade de SNPsGenomic selectionHerdabilidadeHeritabilityMarcador molecularMelhoramento florestalMolecular markerSeleção genômicaTree breedingConvergence of quantitative genetics and genomics is becoming the way that fundamental genetics and applied breeding will be carried out in the next decades. This study bridges the quantitative genetics of complex growth and wood properties traits with genomic technologies towards a more innovative approach to tree breeding. Planted forests play a major role to fulfill the growing world demand for wood products and energy. Eucalypts stand out for their high productivity and versatile wood resulting from the advanced breeding programs associated to clonal propagation and modern silviculture. Despite their fast growth, breeding cycles still take several years and wood properties assessment is limited to a sample of trees in the late stages of selection due to the costs involved in wood phenotyping, not exploitingthe range of genetic variation in wood properties. In this study, we examined fifteen traits including growth and wood chemical and physical properties in 1,000 individuals sampled from an elite Eucalyptus breeding population. Near-infrared spectroscopy (NIRS) models were developed and used for high-throughput phenotyping of wood traits.Highdensity data for 29,090 SNPs was used to obtain accurate pedigree-record-free estimates of trait variance components, heritabilities, genetic and phenotypic correlations, based on a realized relationship matrix, comparing them to pedigree-based estimates. To the best of our knowledge, this is the first study to do this in plants. NIRS predictions were accurate for wood chemical traits and wood density, and variably successful for physical traits. Heritabilities were medium for growth (0.34 to 0.44), high for wood chemical traits (0.56 to 0.85) and variable for wood physical traits (0.11 to 0.63). High positive correlations among growth traits and negative between cellulose and lignin content were observed, while correlations between wood chemical and physical traits and between growth and wood quality traits were low although significant. Phenotypes and SNP markers were then used to build genomic predictive models using a marker density higher than any previous genomic selection study in trees (1 SNP/21 kbp). Two models (RR-BLUP and Bayesian LASSO) that differ regarding the assumed distribution of marker effects were used for genomic predictions. Predictions were compared to those obtained by phenotypic BLUP. Predictive abilities very similar by the two models and strongly correlated to the heritabilities. Accurate genomic-enabled predictions were obtained for wood chemical traits related to lignin, wood density and growth, although generally 15 to 25% lower than those achieved by phenotypic BLUP prediction. Nevertheless, genomic predictions yielded a coincidence above 70% in selecting the top 30 trees ranked by phenotypic selection for growth, wood density and S:G ratio, and 60% when tandem selection was applied. The results of this study open opportunities for an increased use of highthroughput NIRS phenotyping and genome-wide SNP genotyping in Eucalyptus breeding, allowing accurate pedigree-record-free estimation of genetic parameters and prediction of genomic breeding values for yet to be phenotyped trees. These applications should become routine in tree breeding programs for the years to come, significantly reducing the length of breeding cycles while optimizing resource allocation and sustainability of the breeding endeavor.A convergência da genética quantitativa com a genômica está se tornando a maneira pela qual a genética fundamental e aplicada serão conduzidas nas próximas décadas. Este estudo buscou conectar a genética de fenótipos complexos de crescimento e propriedades de madeira às tecnologias genômicas, em uma abordagem inovadora para o melhoramento florestal. Florestas plantadas têm papel fundamental para satisfazer a crescente demanda mundial por produtos madeireiros e energia. O eucalipto,com sua alta produtividade e madeira versátil, é resultado de programas avançados de melhoramento associados à propagação clonal e silvicultura moderna. Apesar de seu rápido crescimento, ciclos de melhoramento ainda levam muitos anos e a avaliação detalhada de propriedades da madeira é limitada a apenas uma amostra das árvores em estágios avançados de seleção, devido aos altos custos de fenotipagem, não explorando assim toda a variação genética disponível. Neste estudo, examinamos quinze caracteres, incluindo crescimento e propriedades químicas e físicas da madeira, em 1000 indivíduos amostrados de uma população elite de melhoramento. Modelos de espectroscopia de infravermelho próximo (NIRS) foram desenvolvidos e utilizados para fenotipagem de alto desempenho de propriedades de madeira. Genotipagem de alta densidade com 29.090 SNPs foi utilizada para obter estimativas acuradas de componentes de variância, herdabilidades e correlações genéticas baseadas em uma matriz de parentesco realizado, ou seja,sem o uso de pedigree. Este é o primeiro estudo de que temos conhecimento a fazer isso em plantas. Predições NIRS foram precisas para caracteres químicos da madeira e densidade, e apresentaram sucesso variável para caracteres físicos. As herdabilidades foram médias para crescimento (0,34 a 0,44), altas para caracteres químicos de madeira (0,56 a 0,85) e variáveis para caracteres físicos da madeira (0,11 a 0,63). Altas correlações positivas entre caracteres de crescimento e negativas entre celulose e lignina foram observadas, enquanto correlações entre caracteres químicos e físicos da madeira foram baixas, porém significativas. Fenótipos e marcadores SNP foram em seguida utilizados na construção de modelos preditivos com a maior densidade de marcadores já utilizada em estudos de seleção genômica em espécies florestais (1 SNP/21 kpb). Dois modelos de predição (RR-BLUP e LASSO Bayesiano)foram usados nas predições genômicas e comparados ao BLUP fenotípico. Os modelos apresentaram capacidades preditivas similares, fortemente correlacionadas às herdabilidades. Predições genômicas precisas foram obtidas para caracteres relacionados à lignina, densidade e crescimento, embora geralmente 15 a 25% menores do que as predições obtidas por BLUP fenotípico. Contudo, predições genômicas alcançaram coincidências acima de 70% na seleção das melhores 30 árvores ranqueadas pela seleção fenotípica para crescimento, densidade e relação S:G, e de 60% quando seleção em tandem foi aplicada. Os resultados deste estudo abrem enormes oportunidades para o uso combinado de fenotipagem NIRS e genotipagem com SNPs no melhoramento do eucalipto, permitindo estimativas acuradas de parâmetros genéticos e a predição de valores genéticos genômicos para plantas jovens ainda não fenotipadas. Estas aplicações deverão se tornar rotineiras nos programas de melhoramento florestal nos próximos anos, reduzindo significativamente a duração dos ciclos de seleção e, consequentemente, otimizando a alocação de recursos e a sustentabilidade do melhoramento.Biblioteca Digitais de Teses e Dissertações da USPGrattapaglia, DarioVencovsky, RolandLima, Bruno Marco de2014-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-25062014-085814/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2016-07-28T16:11:49Zoai:teses.usp.br:tde-25062014-085814Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
Conectando a genômica à genética quantitativa de Eucalyptus: predição genômica e estimação de parâmetros genéticos para crescimento e propriedades de madeira usando alta densidade de SNPs
title Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
spellingShingle Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
Lima, Bruno Marco de
Genomic selection
Herdabilidade
Heritability
Marcador molecular
Melhoramento florestal
Molecular marker
Seleção genômica
Tree breeding
title_short Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
title_full Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
title_fullStr Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
title_full_unstemmed Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
title_sort Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data
author Lima, Bruno Marco de
author_facet Lima, Bruno Marco de
author_role author
dc.contributor.none.fl_str_mv Grattapaglia, Dario
Vencovsky, Roland
dc.contributor.author.fl_str_mv Lima, Bruno Marco de
dc.subject.por.fl_str_mv Genomic selection
Herdabilidade
Heritability
Marcador molecular
Melhoramento florestal
Molecular marker
Seleção genômica
Tree breeding
topic Genomic selection
Herdabilidade
Heritability
Marcador molecular
Melhoramento florestal
Molecular marker
Seleção genômica
Tree breeding
description Convergence of quantitative genetics and genomics is becoming the way that fundamental genetics and applied breeding will be carried out in the next decades. This study bridges the quantitative genetics of complex growth and wood properties traits with genomic technologies towards a more innovative approach to tree breeding. Planted forests play a major role to fulfill the growing world demand for wood products and energy. Eucalypts stand out for their high productivity and versatile wood resulting from the advanced breeding programs associated to clonal propagation and modern silviculture. Despite their fast growth, breeding cycles still take several years and wood properties assessment is limited to a sample of trees in the late stages of selection due to the costs involved in wood phenotyping, not exploitingthe range of genetic variation in wood properties. In this study, we examined fifteen traits including growth and wood chemical and physical properties in 1,000 individuals sampled from an elite Eucalyptus breeding population. Near-infrared spectroscopy (NIRS) models were developed and used for high-throughput phenotyping of wood traits.Highdensity data for 29,090 SNPs was used to obtain accurate pedigree-record-free estimates of trait variance components, heritabilities, genetic and phenotypic correlations, based on a realized relationship matrix, comparing them to pedigree-based estimates. To the best of our knowledge, this is the first study to do this in plants. NIRS predictions were accurate for wood chemical traits and wood density, and variably successful for physical traits. Heritabilities were medium for growth (0.34 to 0.44), high for wood chemical traits (0.56 to 0.85) and variable for wood physical traits (0.11 to 0.63). High positive correlations among growth traits and negative between cellulose and lignin content were observed, while correlations between wood chemical and physical traits and between growth and wood quality traits were low although significant. Phenotypes and SNP markers were then used to build genomic predictive models using a marker density higher than any previous genomic selection study in trees (1 SNP/21 kbp). Two models (RR-BLUP and Bayesian LASSO) that differ regarding the assumed distribution of marker effects were used for genomic predictions. Predictions were compared to those obtained by phenotypic BLUP. Predictive abilities very similar by the two models and strongly correlated to the heritabilities. Accurate genomic-enabled predictions were obtained for wood chemical traits related to lignin, wood density and growth, although generally 15 to 25% lower than those achieved by phenotypic BLUP prediction. Nevertheless, genomic predictions yielded a coincidence above 70% in selecting the top 30 trees ranked by phenotypic selection for growth, wood density and S:G ratio, and 60% when tandem selection was applied. The results of this study open opportunities for an increased use of highthroughput NIRS phenotyping and genome-wide SNP genotyping in Eucalyptus breeding, allowing accurate pedigree-record-free estimation of genetic parameters and prediction of genomic breeding values for yet to be phenotyped trees. These applications should become routine in tree breeding programs for the years to come, significantly reducing the length of breeding cycles while optimizing resource allocation and sustainability of the breeding endeavor.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11137/tde-25062014-085814/
url http://www.teses.usp.br/teses/disponiveis/11/11137/tde-25062014-085814/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257332062355456