Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-091542/ |
Resumo: | O disco intervertebral é uma estrutura cuja função é receber, amortecer e distribuir o impacto das cargas impostas sobre a coluna vertebral. O aumento da idade e a postura adotada pelo indivíduo podem levar à degeneração do disco intervertebral. Atualmente, a Ressonância Magnética (RM) é considerada o melhor e mais sensível método não invasivo de avaliação por imagem do disco intervertebral. Neste trabalho foram desenvolvidos métodos quantitativos computadorizados para auxílio ao diagnóstico da degeneração do disco intervertebral em imagens de ressonância magnética ponderadas em T2 da coluna lombar, de acordo com a escala de Pfirrmann, uma escala semi-quantitativa, com cinco graus de degeneração. Os algoritmos computacionais foram testados em um conjunto de dados que consiste de imagens de 300 discos, obtidos de 102 indivíduos, com diferentes graus de degeneração. Máscaras binárias de discos segmentados manualmente foram utilizadas para calcular seus centroides, visando criar um ponto de referência para possibilitar a extração de atributos. Uma análise de textura foi realizada utilizando a abordagem proposta por Haralick. Para caracterização de forma, também foram calculados os momentos invariantes definidos por Hu e os momentos centrais para cada disco. A classificação do grau de degeneração foi realizada utilizando uma rede neural artificial e o conjunto de atributos extraídos de cada disco. Uma taxa média de acerto na classificação de 87%, com erro padrão de 6,59% e uma área média sob a curva ROC (Receiver Operating Characteristic) de 0,92 indicam o potencial de aplicação dos algoritmos desenvolvidos como ferramenta de apoio ao diagnóstico da degeneração do disco intervertebral. |
id |
USP_87acaecc3b8d368d907f9bb420b75bc8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-30032017-091542 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnéticaComputer analysis of lumbar intervertebral disks in magnetic resonance imagingAnálise de TexturaArtificial Neural NetworksClassificação de PfirrmannDegeneração do Disco IntervertebralImage ProcessingImagens de Ressonância Magnética Ponderadas em T2Intervertebral Disc DegenerationProcessamento de ImagensRedes Neurais ArtificiaisTexture Analysis, Pfirrmann's ScaleWeighted Magnetic Resonance Images T2O disco intervertebral é uma estrutura cuja função é receber, amortecer e distribuir o impacto das cargas impostas sobre a coluna vertebral. O aumento da idade e a postura adotada pelo indivíduo podem levar à degeneração do disco intervertebral. Atualmente, a Ressonância Magnética (RM) é considerada o melhor e mais sensível método não invasivo de avaliação por imagem do disco intervertebral. Neste trabalho foram desenvolvidos métodos quantitativos computadorizados para auxílio ao diagnóstico da degeneração do disco intervertebral em imagens de ressonância magnética ponderadas em T2 da coluna lombar, de acordo com a escala de Pfirrmann, uma escala semi-quantitativa, com cinco graus de degeneração. Os algoritmos computacionais foram testados em um conjunto de dados que consiste de imagens de 300 discos, obtidos de 102 indivíduos, com diferentes graus de degeneração. Máscaras binárias de discos segmentados manualmente foram utilizadas para calcular seus centroides, visando criar um ponto de referência para possibilitar a extração de atributos. Uma análise de textura foi realizada utilizando a abordagem proposta por Haralick. Para caracterização de forma, também foram calculados os momentos invariantes definidos por Hu e os momentos centrais para cada disco. A classificação do grau de degeneração foi realizada utilizando uma rede neural artificial e o conjunto de atributos extraídos de cada disco. Uma taxa média de acerto na classificação de 87%, com erro padrão de 6,59% e uma área média sob a curva ROC (Receiver Operating Characteristic) de 0,92 indicam o potencial de aplicação dos algoritmos desenvolvidos como ferramenta de apoio ao diagnóstico da degeneração do disco intervertebral.The intervertebral disc is a structure whose function is to receive, absorb and transmit the impact loads imposed on the spine. Increasing age and the posture adopted by the individual can lead to degeneration of the intervertebral disc. Currently, Magnetic Resonance Imaging (MRI) is considered the best and most sensitive noninvasive method to imaging evaluation of the intervertebral disc. In this work were developed methods for quantitative computer-aided diagnosis of the intervertebral disc degeneration in MRI T2 weighted images of the lumbar column according to Pfirrmann scale, a semi-quantitative scale with five degrees of degeneration. The algorithms were tested on a dataset of 300 images obtained from 102 subjects with varying degrees of degeneration. Binary masks manually segmented of the discs were used to calculate their centroids, to create a reference point to enable extraction of attributes. A texture analysis was performed using the approach proposed by Haralick. For the shape characterization, invariant moments defined by Hu and central moments were also calculated for each disc. The rating of the degree of degeneration was performed using an artificial neural network and the set of extracted attributes of each disk. An average rate of correct classification of 87%, with standard error 6.59% and an average area under the ROC curve (Receiver Operating Characteristic) of 0.92 indicates the potential application of the algorithms developed as a diagnostic support tool to the degeneration of the intervertebral disc.Biblioteca Digitais de Teses e Dissertações da USPMarques, Paulo Mazzoncini de AzevedoBarreiro, Marcelo da Silva2016-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-091542/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-30032017-091542Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética Computer analysis of lumbar intervertebral disks in magnetic resonance imaging |
title |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
spellingShingle |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética Barreiro, Marcelo da Silva Análise de Textura Artificial Neural Networks Classificação de Pfirrmann Degeneração do Disco Intervertebral Image Processing Imagens de Ressonância Magnética Ponderadas em T2 Intervertebral Disc Degeneration Processamento de Imagens Redes Neurais Artificiais Texture Analysis, Pfirrmann's Scale Weighted Magnetic Resonance Images T2 |
title_short |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
title_full |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
title_fullStr |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
title_full_unstemmed |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
title_sort |
Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética |
author |
Barreiro, Marcelo da Silva |
author_facet |
Barreiro, Marcelo da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marques, Paulo Mazzoncini de Azevedo |
dc.contributor.author.fl_str_mv |
Barreiro, Marcelo da Silva |
dc.subject.por.fl_str_mv |
Análise de Textura Artificial Neural Networks Classificação de Pfirrmann Degeneração do Disco Intervertebral Image Processing Imagens de Ressonância Magnética Ponderadas em T2 Intervertebral Disc Degeneration Processamento de Imagens Redes Neurais Artificiais Texture Analysis, Pfirrmann's Scale Weighted Magnetic Resonance Images T2 |
topic |
Análise de Textura Artificial Neural Networks Classificação de Pfirrmann Degeneração do Disco Intervertebral Image Processing Imagens de Ressonância Magnética Ponderadas em T2 Intervertebral Disc Degeneration Processamento de Imagens Redes Neurais Artificiais Texture Analysis, Pfirrmann's Scale Weighted Magnetic Resonance Images T2 |
description |
O disco intervertebral é uma estrutura cuja função é receber, amortecer e distribuir o impacto das cargas impostas sobre a coluna vertebral. O aumento da idade e a postura adotada pelo indivíduo podem levar à degeneração do disco intervertebral. Atualmente, a Ressonância Magnética (RM) é considerada o melhor e mais sensível método não invasivo de avaliação por imagem do disco intervertebral. Neste trabalho foram desenvolvidos métodos quantitativos computadorizados para auxílio ao diagnóstico da degeneração do disco intervertebral em imagens de ressonância magnética ponderadas em T2 da coluna lombar, de acordo com a escala de Pfirrmann, uma escala semi-quantitativa, com cinco graus de degeneração. Os algoritmos computacionais foram testados em um conjunto de dados que consiste de imagens de 300 discos, obtidos de 102 indivíduos, com diferentes graus de degeneração. Máscaras binárias de discos segmentados manualmente foram utilizadas para calcular seus centroides, visando criar um ponto de referência para possibilitar a extração de atributos. Uma análise de textura foi realizada utilizando a abordagem proposta por Haralick. Para caracterização de forma, também foram calculados os momentos invariantes definidos por Hu e os momentos centrais para cada disco. A classificação do grau de degeneração foi realizada utilizando uma rede neural artificial e o conjunto de atributos extraídos de cada disco. Uma taxa média de acerto na classificação de 87%, com erro padrão de 6,59% e uma área média sob a curva ROC (Receiver Operating Characteristic) de 0,92 indicam o potencial de aplicação dos algoritmos desenvolvidos como ferramenta de apoio ao diagnóstico da degeneração do disco intervertebral. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-091542/ |
url |
http://www.teses.usp.br/teses/disponiveis/17/17138/tde-30032017-091542/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257496877531136 |