The lattice quark propagator at finite temperature

Detalhes bibliográficos
Autor(a) principal: Leal Júnior, Jesuel Marques
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-25062024-095325/
Resumo: Quantum Chromodynamics (QCD) is the theory currently used to describe the strong interaction between quarks and gluons. One of the characteristic features of the theory is its behavior at high energies, where the small coupling between the particles allows for the safe application of traditional quantum field theory techniques, such as perturbative expansions. Conversely, at low energies, the coupling grows and perturbative methods break down. The defining features in the low-energy regime are confinement and spontaneous chiral symmetry breaking. A satisfactory theoretical explanation of these infrared phenomena is still lacking, although a consensus has formed that the use of non-perturbative tools is imperative in their study. An interesting laboratory to explore confinement and chiral symmetry breaking is the environment described by QCD at high temperatures, as the theory is found to undergo chiral symmetry restoration and also a transition to a quark-gluon plasma. In this plasma the fundamental particles are found to be deconfined but strongly interacting. The Greens functions (also called N-point functions or correlators) of the theory encapsulate information relevant to the description of the aforementioned non-perturbative low-energy phenomena. The primary objective of this thesis was the calculation of a particular correlator, the quark propagator, in the vacuum and at finite temperatures. To this end, we have performed numerical simulations using the non-perturbative framework of Lattice Quantum Chromodynamics, which presents a discretized and Euclidean version of QCD, preserving the internal SU(3) gauge symmetry of the theory exactly. We have used the quenched approximation and produced ensembles of gauge configurations for several lattice volumes and temperatures. The quark propagator was computed in the vacuum and at temperatures above the deconfinement transition. A necessary step in the study of correlators in general, and propagators in particular, is setting up a gauge fixing scheme. As a valuable by-product of this project, we have refined and optimized algorithms for SU(3) gauge fixing to Landau gauge on the lattice. In this thesis, we present the approach of Lattice Quantum Chromodynamics, including the introduction of fermions on the lattice and the algorithms employed in the simulations. Our findings encompass the thermal effects on the quark propagator, as well as the results of the Landau gauge fixing optimizations.
id USP_88c892a0a52cac6b2a986684e137edc2
oai_identifier_str oai:teses.usp.br:tde-25062024-095325
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling The lattice quark propagator at finite temperatureO propagador de quark na rede a temperatura finitaFixação de Calibre de LandauLandau Gauge-FixingLattice QCDPropagador do QuarkQCDQCDQCD a Temperatura FinitaQCD at Finite TemperatureQCD na RedeQuark PropagatorQuantum Chromodynamics (QCD) is the theory currently used to describe the strong interaction between quarks and gluons. One of the characteristic features of the theory is its behavior at high energies, where the small coupling between the particles allows for the safe application of traditional quantum field theory techniques, such as perturbative expansions. Conversely, at low energies, the coupling grows and perturbative methods break down. The defining features in the low-energy regime are confinement and spontaneous chiral symmetry breaking. A satisfactory theoretical explanation of these infrared phenomena is still lacking, although a consensus has formed that the use of non-perturbative tools is imperative in their study. An interesting laboratory to explore confinement and chiral symmetry breaking is the environment described by QCD at high temperatures, as the theory is found to undergo chiral symmetry restoration and also a transition to a quark-gluon plasma. In this plasma the fundamental particles are found to be deconfined but strongly interacting. The Greens functions (also called N-point functions or correlators) of the theory encapsulate information relevant to the description of the aforementioned non-perturbative low-energy phenomena. The primary objective of this thesis was the calculation of a particular correlator, the quark propagator, in the vacuum and at finite temperatures. To this end, we have performed numerical simulations using the non-perturbative framework of Lattice Quantum Chromodynamics, which presents a discretized and Euclidean version of QCD, preserving the internal SU(3) gauge symmetry of the theory exactly. We have used the quenched approximation and produced ensembles of gauge configurations for several lattice volumes and temperatures. The quark propagator was computed in the vacuum and at temperatures above the deconfinement transition. A necessary step in the study of correlators in general, and propagators in particular, is setting up a gauge fixing scheme. As a valuable by-product of this project, we have refined and optimized algorithms for SU(3) gauge fixing to Landau gauge on the lattice. In this thesis, we present the approach of Lattice Quantum Chromodynamics, including the introduction of fermions on the lattice and the algorithms employed in the simulations. Our findings encompass the thermal effects on the quark propagator, as well as the results of the Landau gauge fixing optimizations.A cromodinâmica quântica (QCD) é a teoria utilizada para descrever a interação forte entre quarks e glúons. Uma das características da teoria é seu comportamento a altas energias, em que o acoplamento pequeno entre as partículas permite o uso de técnicas tradicionais de teoria quântica de campos, como expansões perturbativas. Por outro lado, no regime de baixas energias, o acoplamento cresce e métodos perturbativos não funcionam. As características mais notáveis da teoria para baixas energias são o confinamento e a presença de quebra espontânea da simetria quiral. Uma explicação teórica satisfatória desses fenômenos do infravermelho ainda está por vir, apesar de se ter formado um consenso de que o uso de ferramentas não-perturbativas é obrigatório para o estudo dos mesmos. Um laboratório interessante para a exploração do confinamento e da quebra de simetria quiral é fornecido pelo ambiente descrito pela QCD a altas temperaturas, sob as quais a teoria realiza a restauração da simetria quiral e também a transição para um estado da matéria chamado plasma de quarks e glúons. No plasma, as partículas fundamentais se encontram desconfinadas, apesar de serem ainda fortemente interagentes. As funções de Green (também chamadas funções de N pontos ou correlatores) da teoria guardam informações relevantes para a descrição dos fenômenos não-perturbativos mencionados. O objetivo principal desta tese era o cálculo de um correlator em particular, o propagador do quark, no vácuo e a temperatura finita. Para esse fim, executamos simulações numéricas usando o arcabouço não-perturbativo da Cromodinâmica Quântica na Rede, no qual é utilizada uma versão discretizada e euclidiana da QCD que preserva a simetria interna de calibre SU(3) da teoria exatamente. Utilizamos a aproximação quenched e produzimos configurações de calibre para diferentes volumes e temperaturas. O propagador do quark foi computado no vácuo e a temperaturas acima da transição de desconfinamento. Um passo necessário para o cálculo de correlatores em geral, e propagadores em particular, é estabelecer um esquema para fixação do calibre. Um valioso subproduto desse projeto foi o refinamento e otimização de algoritmos de fixação de calibre SU(3) para o calibre de Landau na rede. Nesta tese, apresentamos a abordagem da Cromodinâmica Quântica na Rede, incluindo a introdução de férmions na rede e os algoritmos empregados nas simulações. Nossos resultados abarcam os efeitos térmicos no propagador de quark, assim como os resultados das otimizações da fixação de calibre de Landau.Biblioteca Digitais de Teses e Dissertações da USPMendes, Tereza Cristina da RochaLeal Júnior, Jesuel Marques2024-04-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-25062024-095325/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T14:12:02Zoai:teses.usp.br:tde-25062024-095325Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T14:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv The lattice quark propagator at finite temperature
O propagador de quark na rede a temperatura finita
title The lattice quark propagator at finite temperature
spellingShingle The lattice quark propagator at finite temperature
Leal Júnior, Jesuel Marques
Fixação de Calibre de Landau
Landau Gauge-Fixing
Lattice QCD
Propagador do Quark
QCD
QCD
QCD a Temperatura Finita
QCD at Finite Temperature
QCD na Rede
Quark Propagator
title_short The lattice quark propagator at finite temperature
title_full The lattice quark propagator at finite temperature
title_fullStr The lattice quark propagator at finite temperature
title_full_unstemmed The lattice quark propagator at finite temperature
title_sort The lattice quark propagator at finite temperature
author Leal Júnior, Jesuel Marques
author_facet Leal Júnior, Jesuel Marques
author_role author
dc.contributor.none.fl_str_mv Mendes, Tereza Cristina da Rocha
dc.contributor.author.fl_str_mv Leal Júnior, Jesuel Marques
dc.subject.por.fl_str_mv Fixação de Calibre de Landau
Landau Gauge-Fixing
Lattice QCD
Propagador do Quark
QCD
QCD
QCD a Temperatura Finita
QCD at Finite Temperature
QCD na Rede
Quark Propagator
topic Fixação de Calibre de Landau
Landau Gauge-Fixing
Lattice QCD
Propagador do Quark
QCD
QCD
QCD a Temperatura Finita
QCD at Finite Temperature
QCD na Rede
Quark Propagator
description Quantum Chromodynamics (QCD) is the theory currently used to describe the strong interaction between quarks and gluons. One of the characteristic features of the theory is its behavior at high energies, where the small coupling between the particles allows for the safe application of traditional quantum field theory techniques, such as perturbative expansions. Conversely, at low energies, the coupling grows and perturbative methods break down. The defining features in the low-energy regime are confinement and spontaneous chiral symmetry breaking. A satisfactory theoretical explanation of these infrared phenomena is still lacking, although a consensus has formed that the use of non-perturbative tools is imperative in their study. An interesting laboratory to explore confinement and chiral symmetry breaking is the environment described by QCD at high temperatures, as the theory is found to undergo chiral symmetry restoration and also a transition to a quark-gluon plasma. In this plasma the fundamental particles are found to be deconfined but strongly interacting. The Greens functions (also called N-point functions or correlators) of the theory encapsulate information relevant to the description of the aforementioned non-perturbative low-energy phenomena. The primary objective of this thesis was the calculation of a particular correlator, the quark propagator, in the vacuum and at finite temperatures. To this end, we have performed numerical simulations using the non-perturbative framework of Lattice Quantum Chromodynamics, which presents a discretized and Euclidean version of QCD, preserving the internal SU(3) gauge symmetry of the theory exactly. We have used the quenched approximation and produced ensembles of gauge configurations for several lattice volumes and temperatures. The quark propagator was computed in the vacuum and at temperatures above the deconfinement transition. A necessary step in the study of correlators in general, and propagators in particular, is setting up a gauge fixing scheme. As a valuable by-product of this project, we have refined and optimized algorithms for SU(3) gauge fixing to Landau gauge on the lattice. In this thesis, we present the approach of Lattice Quantum Chromodynamics, including the introduction of fermions on the lattice and the algorithms employed in the simulations. Our findings encompass the thermal effects on the quark propagator, as well as the results of the Landau gauge fixing optimizations.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-25062024-095325/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-25062024-095325/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257333083668480