Princípio de reconhecimento de espaços de laços relativos

Detalhes bibliográficos
Autor(a) principal: Vieira, Renato Vasconcellos
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18032019-195116/
Resumo: O princípio de reconhecimento de espaços de $\\infty$-laços é que o funtor $\\Omega^\\infty:\\textttightarrow \\mathcal E^\\infty[\\texttt]$ dado por $\\Omega^\\infty Y_\\bullet=\\text_{\\bullet\\shortrightarrow\\infty}\\Omega^\\bullet Y_\\bullet$ induz uma equivalência entre a categoria homotópica de espectros conectivos e a categoria homotópica de $\\mathcal E^\\infty$-álgebras grouplike para qualquer resolução cofibrante $\\mathcal E^\\infty$ do operad $\\mathcal Com$ de monóides comutativos. Nesta tese é provado um princípio de reconhecimento de 2-espaços de $N$-laços para $2<N\\leq\\infty$. Quando $N=\\infty$ esse princípio afirma o seguinte: Um espectro relativo é um par de espectros $B_\\bullet$ e $Y_\\bullet$ equipados com uma sequências de aplicações pontuadas $\\iota_\\bullet:B_\\bulletightarrow Y_{\\bullet+1}$ compatíveis com as estruturas de espectros. Um espectro relativo é conectivo se o par de espectros subjacentes forem conectivos. Denotamos a categoria de espectros relativos por $\\texttt^ earrow$ e de espectros relativos conectivos por $\\texttt^ earrow_0$. Um $2E_\\infty$-operad é uma resolução cofibrante $\\mathcal E_2^\\infty$ do 2-operad $\\mathcal Com^\\shortrightarrow$ de homomorfismos de monóides comutativos. Uma $\\mathcal E^\\infty_2$-álgebra $(X_c,X_o)$ é grouplike se $X_c$ e $X_o$ forem grouplike. Denotamos a categoria de $\\mathcal E^\\infty_2$-álgebras por $\\mathcal E^\\infty_2[\\texttt]$ e a categoria de $\\mathcal E^\\infty_2$-álgebras grouplike por $\\mathcal E^\\infty_2[\\texttt]_$. O 2-espaço de $\\infty$-laços de um espectro relativo é o par de espaços $\\Omega^\\infty_2\\iota_\\bullet:=\\text_{\\bullet\\shortrightarrow\\infty}(\\Omega^\\bullet Y_\\bullet,\\Omega^{\\bullet}_{\\text} \\iota_\\bullet)$. Temos que as imagens do funtor $\\Omega^\\infty_2$ admitem uma estrutura natural de $\\mathcal E^\\infty_2$-álgebra, logo $\\Omega^\\infty_2$ define um funtor $\\texttt^ earrowightarrow \\mathcal E^\\infty_2[\\texttt]$. Existe um funtor $B^\\infty_2:\\mathcal E^\\infty_2[\\texttt]ightarrow \\texttt^ earrow$ e uma adjunção $(\\mathbb L B^\\infty_2\\dashv\\mathbb R\\Omega^\\infty_2)$ entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]$ e $\\mathcal Ho\\texttt^ earrow$ que induzem uma equivalência entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]_$ e $\\mathcal Ho\\texttt^ earrow_0$.
id USP_8a57a7c98ebd7341d6cac2a9fb723d9a
oai_identifier_str oai:teses.usp.br:tde-18032019-195116
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Princípio de reconhecimento de espaços de laços relativosRecognition principle of relative loop spaces2-operads2-operadsEspaços de laçosEspaços de laços relativosEspectrosEspectros relativosLoop spacesOperadsOperadsPrincípio de reconhecimentoPrincípio de reconhecimento relativoRecognition principleRelative loop spacesRelative recognition principleRelative spectraSpectraO princípio de reconhecimento de espaços de $\\infty$-laços é que o funtor $\\Omega^\\infty:\\textttightarrow \\mathcal E^\\infty[\\texttt]$ dado por $\\Omega^\\infty Y_\\bullet=\\text_{\\bullet\\shortrightarrow\\infty}\\Omega^\\bullet Y_\\bullet$ induz uma equivalência entre a categoria homotópica de espectros conectivos e a categoria homotópica de $\\mathcal E^\\infty$-álgebras grouplike para qualquer resolução cofibrante $\\mathcal E^\\infty$ do operad $\\mathcal Com$ de monóides comutativos. Nesta tese é provado um princípio de reconhecimento de 2-espaços de $N$-laços para $2<N\\leq\\infty$. Quando $N=\\infty$ esse princípio afirma o seguinte: Um espectro relativo é um par de espectros $B_\\bullet$ e $Y_\\bullet$ equipados com uma sequências de aplicações pontuadas $\\iota_\\bullet:B_\\bulletightarrow Y_{\\bullet+1}$ compatíveis com as estruturas de espectros. Um espectro relativo é conectivo se o par de espectros subjacentes forem conectivos. Denotamos a categoria de espectros relativos por $\\texttt^ earrow$ e de espectros relativos conectivos por $\\texttt^ earrow_0$. Um $2E_\\infty$-operad é uma resolução cofibrante $\\mathcal E_2^\\infty$ do 2-operad $\\mathcal Com^\\shortrightarrow$ de homomorfismos de monóides comutativos. Uma $\\mathcal E^\\infty_2$-álgebra $(X_c,X_o)$ é grouplike se $X_c$ e $X_o$ forem grouplike. Denotamos a categoria de $\\mathcal E^\\infty_2$-álgebras por $\\mathcal E^\\infty_2[\\texttt]$ e a categoria de $\\mathcal E^\\infty_2$-álgebras grouplike por $\\mathcal E^\\infty_2[\\texttt]_$. O 2-espaço de $\\infty$-laços de um espectro relativo é o par de espaços $\\Omega^\\infty_2\\iota_\\bullet:=\\text_{\\bullet\\shortrightarrow\\infty}(\\Omega^\\bullet Y_\\bullet,\\Omega^{\\bullet}_{\\text} \\iota_\\bullet)$. Temos que as imagens do funtor $\\Omega^\\infty_2$ admitem uma estrutura natural de $\\mathcal E^\\infty_2$-álgebra, logo $\\Omega^\\infty_2$ define um funtor $\\texttt^ earrowightarrow \\mathcal E^\\infty_2[\\texttt]$. Existe um funtor $B^\\infty_2:\\mathcal E^\\infty_2[\\texttt]ightarrow \\texttt^ earrow$ e uma adjunção $(\\mathbb L B^\\infty_2\\dashv\\mathbb R\\Omega^\\infty_2)$ entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]$ e $\\mathcal Ho\\texttt^ earrow$ que induzem uma equivalência entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]_$ e $\\mathcal Ho\\texttt^ earrow_0$.The recognition principle of $\\infty$-loop spaces is that the functor $\\Omega^\\infty:\\textttightarrow \\mathcal E^\\infty[\\texttt]$ defined by $\\Omega^\\infty Y_\\bullet=\\text_{\\bullet\\shortrightarrow\\infty}\\Omega^\\bullet Y_\\bullet$ induces an equivalence between the homotopy category of connective spectra and the homotopy category of grouplike $\\mathcal E^\\infty$-algebras for any cofibrant resolution $\\mathcal E^\\infty$ of the commutative monoid operad $\\mathcal Com$. In this thesis a relative recognition principle of $N$-loop 2-spaces is proved for $2<N\\leq\\infty$. For $N=\\infty$ this principle states the following: A relative spectrum is a pair of spectra $B_\\bullet$ and $Y_\\bullet$ equipped with a sequence of pointed maps $\\iota_\\bullet:B_\\bulletightarrow Y_{\\bullet+1}$ compatible with the spectrum structures. A relative spectrum is connective if the underlying pair of spectra are connective. The category of relative spectra is denoted by $\\texttt^ earrow$ and the category of connective relative spectra by $\\texttt^ earrow_0$. A $2E_\\infty$-operad is a cofibrant resolution $\\mathcal E_2^\\infty$ of the commutative monoid homomorphism 2-operad $\\mathcal Com^\\shortrightarrow$. An $\\mathcal E^\\infty_2$-algebra $(X_c,X_o)$ is grouplike if $X_c$ and $X_o$ are grouplike. The category of $\\mathcal E^\\infty_2$-algebras is denoted by $\\mathcal E^\\infty_2[\\texttt]$ and the category of grouplike $\\mathcal E^\\infty_2$-algebras by $\\mathcal E^\\infty_2[\\texttt]_$. The $\\infty$-loop 2-space of a relative spectrum is the pair of pointed spaces $\\Omega^\\infty_2\\iota_\\bullet:=\\text_{\\bullet\\shortrightarrow\\infty}(\\Omega^\\bullet Y_\\bullet,\\Omega_{\\text}^{\\bullet} \\iota_\\bullet)$. The images of the functor $\\Omega^\\infty_2$ admit an $\\mathcal E^\\infty_2$-algebra structure, therefore $\\Omega^\\infty_2$ defines a functor $\\texttt^ earrowightarrow \\mathcal E^\\infty_2[\\texttt]$. The infinite relative recognition principle is that there is a functor $B^\\infty_2:\\mathcal E^\\infty_2[\\texttt]ightarrow \\texttt^ earrow$ and a derived adjunction $(\\mathbb L B^\\infty_2\\dashv\\mathbb R\\Omega^\\infty_2)$ between the homotopy categories $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]$ and $\\mathcal Ho\\texttt^ earrow$ that induce an equivalence beteween the homotopy categories $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]_$ and $\\mathcal Ho\\texttt^ earrow_0$.Biblioteca Digitais de Teses e Dissertações da USPGoncalves, Daciberg LimaHoefel, Eduardo Outeiral CorreaVieira, Renato Vasconcellos2018-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-18032019-195116/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-09T23:21:59Zoai:teses.usp.br:tde-18032019-195116Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Princípio de reconhecimento de espaços de laços relativos
Recognition principle of relative loop spaces
title Princípio de reconhecimento de espaços de laços relativos
spellingShingle Princípio de reconhecimento de espaços de laços relativos
Vieira, Renato Vasconcellos
2-operads
2-operads
Espaços de laços
Espaços de laços relativos
Espectros
Espectros relativos
Loop spaces
Operads
Operads
Princípio de reconhecimento
Princípio de reconhecimento relativo
Recognition principle
Relative loop spaces
Relative recognition principle
Relative spectra
Spectra
title_short Princípio de reconhecimento de espaços de laços relativos
title_full Princípio de reconhecimento de espaços de laços relativos
title_fullStr Princípio de reconhecimento de espaços de laços relativos
title_full_unstemmed Princípio de reconhecimento de espaços de laços relativos
title_sort Princípio de reconhecimento de espaços de laços relativos
author Vieira, Renato Vasconcellos
author_facet Vieira, Renato Vasconcellos
author_role author
dc.contributor.none.fl_str_mv Goncalves, Daciberg Lima
Hoefel, Eduardo Outeiral Correa
dc.contributor.author.fl_str_mv Vieira, Renato Vasconcellos
dc.subject.por.fl_str_mv 2-operads
2-operads
Espaços de laços
Espaços de laços relativos
Espectros
Espectros relativos
Loop spaces
Operads
Operads
Princípio de reconhecimento
Princípio de reconhecimento relativo
Recognition principle
Relative loop spaces
Relative recognition principle
Relative spectra
Spectra
topic 2-operads
2-operads
Espaços de laços
Espaços de laços relativos
Espectros
Espectros relativos
Loop spaces
Operads
Operads
Princípio de reconhecimento
Princípio de reconhecimento relativo
Recognition principle
Relative loop spaces
Relative recognition principle
Relative spectra
Spectra
description O princípio de reconhecimento de espaços de $\\infty$-laços é que o funtor $\\Omega^\\infty:\\textttightarrow \\mathcal E^\\infty[\\texttt]$ dado por $\\Omega^\\infty Y_\\bullet=\\text_{\\bullet\\shortrightarrow\\infty}\\Omega^\\bullet Y_\\bullet$ induz uma equivalência entre a categoria homotópica de espectros conectivos e a categoria homotópica de $\\mathcal E^\\infty$-álgebras grouplike para qualquer resolução cofibrante $\\mathcal E^\\infty$ do operad $\\mathcal Com$ de monóides comutativos. Nesta tese é provado um princípio de reconhecimento de 2-espaços de $N$-laços para $2<N\\leq\\infty$. Quando $N=\\infty$ esse princípio afirma o seguinte: Um espectro relativo é um par de espectros $B_\\bullet$ e $Y_\\bullet$ equipados com uma sequências de aplicações pontuadas $\\iota_\\bullet:B_\\bulletightarrow Y_{\\bullet+1}$ compatíveis com as estruturas de espectros. Um espectro relativo é conectivo se o par de espectros subjacentes forem conectivos. Denotamos a categoria de espectros relativos por $\\texttt^ earrow$ e de espectros relativos conectivos por $\\texttt^ earrow_0$. Um $2E_\\infty$-operad é uma resolução cofibrante $\\mathcal E_2^\\infty$ do 2-operad $\\mathcal Com^\\shortrightarrow$ de homomorfismos de monóides comutativos. Uma $\\mathcal E^\\infty_2$-álgebra $(X_c,X_o)$ é grouplike se $X_c$ e $X_o$ forem grouplike. Denotamos a categoria de $\\mathcal E^\\infty_2$-álgebras por $\\mathcal E^\\infty_2[\\texttt]$ e a categoria de $\\mathcal E^\\infty_2$-álgebras grouplike por $\\mathcal E^\\infty_2[\\texttt]_$. O 2-espaço de $\\infty$-laços de um espectro relativo é o par de espaços $\\Omega^\\infty_2\\iota_\\bullet:=\\text_{\\bullet\\shortrightarrow\\infty}(\\Omega^\\bullet Y_\\bullet,\\Omega^{\\bullet}_{\\text} \\iota_\\bullet)$. Temos que as imagens do funtor $\\Omega^\\infty_2$ admitem uma estrutura natural de $\\mathcal E^\\infty_2$-álgebra, logo $\\Omega^\\infty_2$ define um funtor $\\texttt^ earrowightarrow \\mathcal E^\\infty_2[\\texttt]$. Existe um funtor $B^\\infty_2:\\mathcal E^\\infty_2[\\texttt]ightarrow \\texttt^ earrow$ e uma adjunção $(\\mathbb L B^\\infty_2\\dashv\\mathbb R\\Omega^\\infty_2)$ entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]$ e $\\mathcal Ho\\texttt^ earrow$ que induzem uma equivalência entre as categorias homotópicas $\\mathcal Ho\\mathcal E^\\infty_2[\\texttt]_$ e $\\mathcal Ho\\texttt^ earrow_0$.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18032019-195116/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18032019-195116/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257063959298048