On the homotopy types
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/ |
Resumo: | This dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces. |
id |
USP_8ae1a806d2e1e22ba04ac4402bfae221 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14042022-085011 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
On the homotopy typesSobre os tipos de homotopiaÁlgebra homotópicaCategorias superioresCohomologiaCohomologyDerivadoresDerivatorsFoundations of homotopy theoryFundamentos da teoria da homotopiaHigher categoriesHomotopical algebraThis dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces.Esta dissertação trata sobre os fundamentos da homotopia seguindo as ideias dos manuscritos Les Derivateurs e Pursuing Stacks de Grothendieck. Em particular, discutimos como o formalismo dos derivadores nos permite pensar os tipos de homotopia intrinsicamente, ou, mesmo como um conceito primitivo para a matemática, para os quais os conjuntos são um caso particular. Mostramos como a teoria das categorias e naturalmente estendida a álgebra homotópica, entendida aqui como o formalismo dos derivadores. Em seguida, provamos em detalhes um teorema de Heller e Cisinski, caracterizando a categoria dos tipos de homotopia com uma propriedade universal adequada na linguagem dos derivadores, que por sua vez, estende a propriedade universal de Yoneda da categoria dos conjuntos para as categorias co-completas. A partir desse resultado, propomos uma redefinição sintética da categoria dos tipos de homotopia. Isso estabelece uma explicação conceitual matemática para as ligações entre teoria homotópica dos tipos, 1- categorias e álgebra homotópica, e também para o recente programa de refundamentação das matemáticas via teoria homotópica dos tipos idealizado por Voevodsky. Nesse sentido, a pesquisa sobre os fundamentos da teoria da homotopia reflete em uma discussão sobre os fundamentos das matemáticas. Também expomos a teoria dos 1-grupoides de Grothendieck-Maltsiniotis e a celebre Hipótese da Homotopia conjecturada por Grothendieck, que arma a equivalência (homotópica) entre os espacos e os 1-grupoides. Tal conjectura, se demonstrada, forneceria uma paisagem estritamente algébrica dos espaços.Biblioteca Digitais de Teses e Dissertações da USPMariano, Hugo LuizAlexandre, Thiago2022-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-27T20:58:51Zoai:teses.usp.br:tde-14042022-085011Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-27T20:58:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
On the homotopy types Sobre os tipos de homotopia |
title |
On the homotopy types |
spellingShingle |
On the homotopy types Alexandre, Thiago Álgebra homotópica Categorias superiores Cohomologia Cohomology Derivadores Derivators Foundations of homotopy theory Fundamentos da teoria da homotopia Higher categories Homotopical algebra |
title_short |
On the homotopy types |
title_full |
On the homotopy types |
title_fullStr |
On the homotopy types |
title_full_unstemmed |
On the homotopy types |
title_sort |
On the homotopy types |
author |
Alexandre, Thiago |
author_facet |
Alexandre, Thiago |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mariano, Hugo Luiz |
dc.contributor.author.fl_str_mv |
Alexandre, Thiago |
dc.subject.por.fl_str_mv |
Álgebra homotópica Categorias superiores Cohomologia Cohomology Derivadores Derivators Foundations of homotopy theory Fundamentos da teoria da homotopia Higher categories Homotopical algebra |
topic |
Álgebra homotópica Categorias superiores Cohomologia Cohomology Derivadores Derivators Foundations of homotopy theory Fundamentos da teoria da homotopia Higher categories Homotopical algebra |
description |
This dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256961582628864 |