On the homotopy types

Detalhes bibliográficos
Autor(a) principal: Alexandre, Thiago
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
Resumo: This dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces.
id USP_8ae1a806d2e1e22ba04ac4402bfae221
oai_identifier_str oai:teses.usp.br:tde-14042022-085011
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On the homotopy typesSobre os tipos de homotopiaÁlgebra homotópicaCategorias superioresCohomologiaCohomologyDerivadoresDerivatorsFoundations of homotopy theoryFundamentos da teoria da homotopiaHigher categoriesHomotopical algebraThis dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces.Esta dissertação trata sobre os fundamentos da homotopia seguindo as ideias dos manuscritos Les Derivateurs e Pursuing Stacks de Grothendieck. Em particular, discutimos como o formalismo dos derivadores nos permite pensar os tipos de homotopia intrinsicamente, ou, mesmo como um conceito primitivo para a matemática, para os quais os conjuntos são um caso particular. Mostramos como a teoria das categorias e naturalmente estendida a álgebra homotópica, entendida aqui como o formalismo dos derivadores. Em seguida, provamos em detalhes um teorema de Heller e Cisinski, caracterizando a categoria dos tipos de homotopia com uma propriedade universal adequada na linguagem dos derivadores, que por sua vez, estende a propriedade universal de Yoneda da categoria dos conjuntos para as categorias co-completas. A partir desse resultado, propomos uma redefinição sintética da categoria dos tipos de homotopia. Isso estabelece uma explicação conceitual matemática para as ligações entre teoria homotópica dos tipos, 1- categorias e álgebra homotópica, e também para o recente programa de refundamentação das matemáticas via teoria homotópica dos tipos idealizado por Voevodsky. Nesse sentido, a pesquisa sobre os fundamentos da teoria da homotopia reflete em uma discussão sobre os fundamentos das matemáticas. Também expomos a teoria dos 1-grupoides de Grothendieck-Maltsiniotis e a celebre Hipótese da Homotopia conjecturada por Grothendieck, que arma a equivalência (homotópica) entre os espacos e os 1-grupoides. Tal conjectura, se demonstrada, forneceria uma paisagem estritamente algébrica dos espaços.Biblioteca Digitais de Teses e Dissertações da USPMariano, Hugo LuizAlexandre, Thiago2022-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-27T20:58:51Zoai:teses.usp.br:tde-14042022-085011Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-27T20:58:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On the homotopy types
Sobre os tipos de homotopia
title On the homotopy types
spellingShingle On the homotopy types
Alexandre, Thiago
Álgebra homotópica
Categorias superiores
Cohomologia
Cohomology
Derivadores
Derivators
Foundations of homotopy theory
Fundamentos da teoria da homotopia
Higher categories
Homotopical algebra
title_short On the homotopy types
title_full On the homotopy types
title_fullStr On the homotopy types
title_full_unstemmed On the homotopy types
title_sort On the homotopy types
author Alexandre, Thiago
author_facet Alexandre, Thiago
author_role author
dc.contributor.none.fl_str_mv Mariano, Hugo Luiz
dc.contributor.author.fl_str_mv Alexandre, Thiago
dc.subject.por.fl_str_mv Álgebra homotópica
Categorias superiores
Cohomologia
Cohomology
Derivadores
Derivators
Foundations of homotopy theory
Fundamentos da teoria da homotopia
Higher categories
Homotopical algebra
topic Álgebra homotópica
Categorias superiores
Cohomologia
Cohomology
Derivadores
Derivators
Foundations of homotopy theory
Fundamentos da teoria da homotopia
Higher categories
Homotopical algebra
description This dissertation is concerned with the foundations of homotopy theory following the ideas of the manuscripts Les Derivateurs and Pursuing Stacks of Grothendieck. In particular, we discuss how the formalism of derivators allows us to think about homotopy types intrinsically, or, even as a primitive concept for mathematics, for which sets are a particular case. We show how category theory is naturally extended to homotopical algebra, understood here as the formalism of derivators. Then, we proof in details a theorem of Heller and Cisinski, characterizing the category of homotopy types with a suitable universal property in the language of derivators, which extends the Yoneda universal property of the category of sets with respect to the cocomplete categories. From this result, we propose a synthetic re-denition of the category of homotopy types. This establishes a mathematical conceptual explanation for the the links between homotopy type theory, 1-categories and homotopical algebra, and also for the recent program of re-foundations of mathematics via homotopy type theory envisioned by Voevodsky. In this sense, the research on foundations of homotopy theory re ects in a discussion about the re-foundations of mathematics. We also expose the theory of Grothendieck-Maltsiniotis 1-groupoids and the famous Homotopy Hypothesis conjectured by Grothendieck, which arms the (homotopical) equivalence between spaces and 1-groupoids. This conjectured, if proved, provides a strictly algebraic picture of spaces.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256961582628864