Modelos não lineares para dados de contagem longitudinais

Detalhes bibliográficos
Autor(a) principal: Araujo, Ana Maria Souza de
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04042007-145332/
Resumo: Experimentos em que medidas são realizadas repetidamente na mesma unidade experimental são comuns na área agronômica. As técnicas estatísticas utilizadas para análise de dados desses experimentos são chamadas de análises de medidas repetidas, tendo como caso particular o estudo de dados longitudinais, em que uma mesma variável resposta é observada em várias ocasiões no tempo. Além disso, o comportamento longitudinal pode seguir um padrão não linear, o que ocorre com freqüência em estudos de crescimento. Também são comuns experimentos em que a variável resposta refere-se a contagem. Este trabalho abordou a modelagem de dados de contagem, obtidos a partir de experimentos com medidas repetidas ao longo do tempo, em que o comportamento longitudinal da variável resposta é não linear. A distribuição Poisson multivariada, com covariâncias iguais entre as medidas, foi utilizada de forma a considerar a dependência entre os componentes do vetor de observações de medidas repetidas em cada unidade experimental. O modelo proposto por Karlis e Meligkotsidou (2005) foi estendido para dados longitudinais provenientes de experimentos inteiramente casualizados. Modelos para experimentos em blocos casualizados, supondo-se efeitos fixos ou aleatórios para blocos, foram também propostos. A ocorrência de superdispersão foi considerada e modelada através da distribuição Poisson multivariada mista. A estimação dos parâmetros foi realizada através do método de máxima verossimilhança, via algoritmo EM. A metodologia proposta foi aplicada a dados simulados para cada uma das situações estudadas e a um conjunto de dados de um experimento em blocos casualizados em que foram observados o número de folhas de bromélias em seis instantes no tempo. O método mostrou-se eficiente na estimação dos parâmetros para o modelo considerando o delineamento completamente casualizado, inclusive na ocorrência de superdispersão, e delineamento em blocos casualizados com efeito fixo, sem superdispersão e efeito aleatório para blocos. No entanto, a estimação para o modelo que considera efeito fixo para blocos, na presença de superdispersão e para o parâmetro de variância do efeito aleatório para blocos precisa ser aprimorada.
id USP_8c38277da82dff743b6c87e9a03b1433
oai_identifier_str oai:teses.usp.br:tde-04042007-145332
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos não lineares para dados de contagem longitudinaisNon linear models for count longitudinal dataAnálise de dados longitudinaisCount dataDados de contagemDistribuição de PoissonLongitudinal data analysisMaximum likelihood methodMétodo da máxima verossimilhançaModelos não linearesNonlinear modelsPoisson distributionExperimentos em que medidas são realizadas repetidamente na mesma unidade experimental são comuns na área agronômica. As técnicas estatísticas utilizadas para análise de dados desses experimentos são chamadas de análises de medidas repetidas, tendo como caso particular o estudo de dados longitudinais, em que uma mesma variável resposta é observada em várias ocasiões no tempo. Além disso, o comportamento longitudinal pode seguir um padrão não linear, o que ocorre com freqüência em estudos de crescimento. Também são comuns experimentos em que a variável resposta refere-se a contagem. Este trabalho abordou a modelagem de dados de contagem, obtidos a partir de experimentos com medidas repetidas ao longo do tempo, em que o comportamento longitudinal da variável resposta é não linear. A distribuição Poisson multivariada, com covariâncias iguais entre as medidas, foi utilizada de forma a considerar a dependência entre os componentes do vetor de observações de medidas repetidas em cada unidade experimental. O modelo proposto por Karlis e Meligkotsidou (2005) foi estendido para dados longitudinais provenientes de experimentos inteiramente casualizados. Modelos para experimentos em blocos casualizados, supondo-se efeitos fixos ou aleatórios para blocos, foram também propostos. A ocorrência de superdispersão foi considerada e modelada através da distribuição Poisson multivariada mista. A estimação dos parâmetros foi realizada através do método de máxima verossimilhança, via algoritmo EM. A metodologia proposta foi aplicada a dados simulados para cada uma das situações estudadas e a um conjunto de dados de um experimento em blocos casualizados em que foram observados o número de folhas de bromélias em seis instantes no tempo. O método mostrou-se eficiente na estimação dos parâmetros para o modelo considerando o delineamento completamente casualizado, inclusive na ocorrência de superdispersão, e delineamento em blocos casualizados com efeito fixo, sem superdispersão e efeito aleatório para blocos. No entanto, a estimação para o modelo que considera efeito fixo para blocos, na presença de superdispersão e para o parâmetro de variância do efeito aleatório para blocos precisa ser aprimorada.Experiments in which measurements are taken in the same experimental unit are common in agriculture area. The statistical techniques used to analyse data from those experiments are called repeated measurement analysis, and longitudinal study, in which the response variable is observed along the time, is a particular case. The longitudinal behaviour can be non linear, occuring freq¨uently in growth studies. It is also common to have experiments in which the response variable refers to count data. This work approaches the modelling of count data, obtained from experiments with repeated measurements through time, in which the response variable longitudinal behaviour is non linear. The multivariate Poisson distribution, with equal covariances between measurements, was used to consider the dependence between the components of the repeated measurement observation vector in each experimental unit. The Karlis and Meligkotsidou (2005) proposal was extended to longitudinal data obtained from completely randomized. Models for randomized blocks experiments, assuming fixed or random effects for blocks, were also proposed. The occurence of overdispersion was considered and modelled through mixed multivariate Poisson distribution. The parameter estimation was done using maximum likelihood method, via EM algorithm. The methodology was applied to simulated data for all the cases studied and to a data set from a randomized block experiment in which the number of Bromeliads leaves were observed through six instants in time. The method was efficient to estimate the parameters for the completely randomized experiment, including the occurence of overdispersion, and for the randomized blocks experiments assuming fixed effect, with no overdispersion, and random effect for blocks. The estimation for the model that considers fixed effect for block, with overdispersion and for the variance parameters of the random effect for blocks must be improved.Biblioteca Digitais de Teses e Dissertações da USPAndrade, Dalton Francisco deDemetrio, Clarice Garcia BorgesAraujo, Ana Maria Souza de2007-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-04042007-145332/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-04042007-145332Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos não lineares para dados de contagem longitudinais
Non linear models for count longitudinal data
title Modelos não lineares para dados de contagem longitudinais
spellingShingle Modelos não lineares para dados de contagem longitudinais
Araujo, Ana Maria Souza de
Análise de dados longitudinais
Count data
Dados de contagem
Distribuição de Poisson
Longitudinal data analysis
Maximum likelihood method
Método da máxima verossimilhança
Modelos não lineares
Nonlinear models
Poisson distribution
title_short Modelos não lineares para dados de contagem longitudinais
title_full Modelos não lineares para dados de contagem longitudinais
title_fullStr Modelos não lineares para dados de contagem longitudinais
title_full_unstemmed Modelos não lineares para dados de contagem longitudinais
title_sort Modelos não lineares para dados de contagem longitudinais
author Araujo, Ana Maria Souza de
author_facet Araujo, Ana Maria Souza de
author_role author
dc.contributor.none.fl_str_mv Andrade, Dalton Francisco de
Demetrio, Clarice Garcia Borges
dc.contributor.author.fl_str_mv Araujo, Ana Maria Souza de
dc.subject.por.fl_str_mv Análise de dados longitudinais
Count data
Dados de contagem
Distribuição de Poisson
Longitudinal data analysis
Maximum likelihood method
Método da máxima verossimilhança
Modelos não lineares
Nonlinear models
Poisson distribution
topic Análise de dados longitudinais
Count data
Dados de contagem
Distribuição de Poisson
Longitudinal data analysis
Maximum likelihood method
Método da máxima verossimilhança
Modelos não lineares
Nonlinear models
Poisson distribution
description Experimentos em que medidas são realizadas repetidamente na mesma unidade experimental são comuns na área agronômica. As técnicas estatísticas utilizadas para análise de dados desses experimentos são chamadas de análises de medidas repetidas, tendo como caso particular o estudo de dados longitudinais, em que uma mesma variável resposta é observada em várias ocasiões no tempo. Além disso, o comportamento longitudinal pode seguir um padrão não linear, o que ocorre com freqüência em estudos de crescimento. Também são comuns experimentos em que a variável resposta refere-se a contagem. Este trabalho abordou a modelagem de dados de contagem, obtidos a partir de experimentos com medidas repetidas ao longo do tempo, em que o comportamento longitudinal da variável resposta é não linear. A distribuição Poisson multivariada, com covariâncias iguais entre as medidas, foi utilizada de forma a considerar a dependência entre os componentes do vetor de observações de medidas repetidas em cada unidade experimental. O modelo proposto por Karlis e Meligkotsidou (2005) foi estendido para dados longitudinais provenientes de experimentos inteiramente casualizados. Modelos para experimentos em blocos casualizados, supondo-se efeitos fixos ou aleatórios para blocos, foram também propostos. A ocorrência de superdispersão foi considerada e modelada através da distribuição Poisson multivariada mista. A estimação dos parâmetros foi realizada através do método de máxima verossimilhança, via algoritmo EM. A metodologia proposta foi aplicada a dados simulados para cada uma das situações estudadas e a um conjunto de dados de um experimento em blocos casualizados em que foram observados o número de folhas de bromélias em seis instantes no tempo. O método mostrou-se eficiente na estimação dos parâmetros para o modelo considerando o delineamento completamente casualizado, inclusive na ocorrência de superdispersão, e delineamento em blocos casualizados com efeito fixo, sem superdispersão e efeito aleatório para blocos. No entanto, a estimação para o modelo que considera efeito fixo para blocos, na presença de superdispersão e para o parâmetro de variância do efeito aleatório para blocos precisa ser aprimorada.
publishDate 2007
dc.date.none.fl_str_mv 2007-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04042007-145332/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04042007-145332/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256652873465856