Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/96/96131/tde-01102021-091638/ |
Resumo: | O presente trabalho é um exercício preditivo para a dinâmica da matriz de covariância incondicional de ativos do mercado brasileiro. Levamos em consideração métodos distintos para o cálculo da matriz, esquivando-se da matriz de covariância amostral e avaliamos o impacto preditivo no uso de regressões com encolhimento na estimação da matriz de covariância explicada pelo seu passado - um formato autorregressivo, portanto. Diferentemente do mundo univariado, o estudo de matriz de covariância tornou-se custoso devido à maldição da dimensionalidade. Tradicionalmente, via VAR, o exercício proposto traria problemas de especificação e também de dimensão, devido ao grande número de covariadas. Os resultados encontrados mostram que não necessariamente temos pior desempenho preditivo ao reduzir o número de séries, mas com a metodologia do MCS não rejeitamos a hipótese de mesma habilidade preditiva entre modelos que selecionam variáveis e que não o fazem. Diante do exercício proposto investigamos quais dificuldades e padrões estão inseridos nos dados no contexto do mercado brasileiro: trata-se de um mercado pouco líquido e que mesmo em ativos mais negociados temos problemas de dados faltantes e de concentração setorial nos ativos mais negociados. Do ponto de vista econômico encontramos resultados em linha com a literatura de referência, mostrando maior dinâmica intra setorial para processos de variância e do ponto de vista preditivo não encontramos um padrão claro para os processos de covariância. |
id |
USP_8d57e6a5eadec2e1e0e5d92d82cd9751 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01102021-091638 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiroMultivariate realized volatility: an machine learning analysis for Brazilian market dataAlta dimensãoAprendizado de máquinaHigh dimensionMachine learningRealized volatilityVolatilidade realizadaO presente trabalho é um exercício preditivo para a dinâmica da matriz de covariância incondicional de ativos do mercado brasileiro. Levamos em consideração métodos distintos para o cálculo da matriz, esquivando-se da matriz de covariância amostral e avaliamos o impacto preditivo no uso de regressões com encolhimento na estimação da matriz de covariância explicada pelo seu passado - um formato autorregressivo, portanto. Diferentemente do mundo univariado, o estudo de matriz de covariância tornou-se custoso devido à maldição da dimensionalidade. Tradicionalmente, via VAR, o exercício proposto traria problemas de especificação e também de dimensão, devido ao grande número de covariadas. Os resultados encontrados mostram que não necessariamente temos pior desempenho preditivo ao reduzir o número de séries, mas com a metodologia do MCS não rejeitamos a hipótese de mesma habilidade preditiva entre modelos que selecionam variáveis e que não o fazem. Diante do exercício proposto investigamos quais dificuldades e padrões estão inseridos nos dados no contexto do mercado brasileiro: trata-se de um mercado pouco líquido e que mesmo em ativos mais negociados temos problemas de dados faltantes e de concentração setorial nos ativos mais negociados. Do ponto de vista econômico encontramos resultados em linha com a literatura de referência, mostrando maior dinâmica intra setorial para processos de variância e do ponto de vista preditivo não encontramos um padrão claro para os processos de covariância.The present work is a predictive exercise for the unconditional covariance matrix dynamics of Brazilian market assets. We consider different methods for calculating the matrix, dodging the sample covariance matrix, and evaluate the predictive impact of using shrinkage regressions in estimating the covariance matrix explained by its past - an autoregressive format, therefore. Unlike the univariate world, the covariance matrix study has become costly due to the curse of dimensionality. Traditionally, via VAR, the proposed exercise would bring specification and dimension problems, due to the large number of covariates. The results found show that we do not necessarily have a worse predictive performance when reducing the number of series, but with the MCS methodology we do not reject the hypothesis of the same predictive ability between models that select variables and that do not. In view of the proposed exercise, we investigate which difficulties and patterns are inserted in the data in the context of the Brazilian market: it is a little liquid market and that even in the most traded assets we have problems with missing data and sector concentration in the most traded assets. From an economic point of view, we found results in line with the reference literature, showing greater intra-sector dynamics for processes of variance and, from a predictive point of view, we did not find a clear pattern for the processes of covariance.Biblioteca Digitais de Teses e Dissertações da USPLaurini, Marcio PolettiVieira, Leonardo Ieracitano2021-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/96/96131/tde-01102021-091638/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-10-20T18:49:02Zoai:teses.usp.br:tde-01102021-091638Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-10-20T18:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro Multivariate realized volatility: an machine learning analysis for Brazilian market data |
title |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
spellingShingle |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro Vieira, Leonardo Ieracitano Alta dimensão Aprendizado de máquina High dimension Machine learning Realized volatility Volatilidade realizada |
title_short |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
title_full |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
title_fullStr |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
title_full_unstemmed |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
title_sort |
Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro |
author |
Vieira, Leonardo Ieracitano |
author_facet |
Vieira, Leonardo Ieracitano |
author_role |
author |
dc.contributor.none.fl_str_mv |
Laurini, Marcio Poletti |
dc.contributor.author.fl_str_mv |
Vieira, Leonardo Ieracitano |
dc.subject.por.fl_str_mv |
Alta dimensão Aprendizado de máquina High dimension Machine learning Realized volatility Volatilidade realizada |
topic |
Alta dimensão Aprendizado de máquina High dimension Machine learning Realized volatility Volatilidade realizada |
description |
O presente trabalho é um exercício preditivo para a dinâmica da matriz de covariância incondicional de ativos do mercado brasileiro. Levamos em consideração métodos distintos para o cálculo da matriz, esquivando-se da matriz de covariância amostral e avaliamos o impacto preditivo no uso de regressões com encolhimento na estimação da matriz de covariância explicada pelo seu passado - um formato autorregressivo, portanto. Diferentemente do mundo univariado, o estudo de matriz de covariância tornou-se custoso devido à maldição da dimensionalidade. Tradicionalmente, via VAR, o exercício proposto traria problemas de especificação e também de dimensão, devido ao grande número de covariadas. Os resultados encontrados mostram que não necessariamente temos pior desempenho preditivo ao reduzir o número de séries, mas com a metodologia do MCS não rejeitamos a hipótese de mesma habilidade preditiva entre modelos que selecionam variáveis e que não o fazem. Diante do exercício proposto investigamos quais dificuldades e padrões estão inseridos nos dados no contexto do mercado brasileiro: trata-se de um mercado pouco líquido e que mesmo em ativos mais negociados temos problemas de dados faltantes e de concentração setorial nos ativos mais negociados. Do ponto de vista econômico encontramos resultados em linha com a literatura de referência, mostrando maior dinâmica intra setorial para processos de variância e do ponto de vista preditivo não encontramos um padrão claro para os processos de covariância. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-01102021-091638/ |
url |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-01102021-091638/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256589841465344 |