Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação

Detalhes bibliográficos
Autor(a) principal: Ceron, Luis Andres Rosso
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-170403/
Resumo: Este trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica\" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.
id USP_8de591f11da3458bcce5dd1af7440af0
oai_identifier_str oai:teses.usp.br:tde-03062019-170403
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interaçãoStability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wellsAnalytic perturbationDiracs delta potentialEquação de Schrödinger não-linearEstabilidade orbitalFunções elípticas de JacobiJacobian elliptic functionsNon-linear Schrödinger equationsOrbital stabilityperturbação analiticaPotencial delta de DiracTeoria de FloquetTeoria de FloquetEste trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica\" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.This work consists mainly in establishing an analytical way the existence and orbital stability for the standing-wave solutions of \"peakon\"type of the following Schrödinger equation with two points of interaction, determined by two Diracs delta centered at the points x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c + c ]u(x, t) = |u(x, t)| 2 u(x, t), (2) where u : R × R C, Z R and c is the Diracs delta distribution in x = c > 0, namely, for H 1 (R), h c , i = (c). For the standing-wave solutions associated to equation (2), i.e., u(x, t) = e it (x), we show that is possible to determine the profile (x) as follows: between the points c and c, the profile admits at least two smooth positive functions given by the Jacobi elliptic functions of dnoidal and cnoidal type. For c < |x|, the profile coincides with an specific shift of the soliton-profile hiperbolic secant profile (it is well-known in the literature that the hiperbolic secant profile is associated to the equation (2) for the case Z = 0). Indeed, we show for the case Z > 0 that it is possible to determine a periodic dnoidal profile between the points c and c. On the other hand, for the case Z < 0 we establish a periodic cnoidal profile between the points c and c. A crucial question arises in the problem of the existence of a suitable profile is the one related to the location of the interaction point c > 0. This question was crucial to the achievement of our stability/instability result. In fact, the choice of location of the interaction point c implies that the second derivative of the porfile is continuous at c. The stability/instability theory of these specific profiles are based on the analityc per- turbation theory and the framework developed by Weinstein and Grillakis&Shatah&Strauss. More precisely, we show that those ones with a dnoidal profile are unstable and those ones with a cnoidal profile are stable. In addition, we study the Cauchy problem in the energy space H 1 (R) for equation (2). For this purpose, it is necessary to study the spectrum of the operator d 2 ±c,Z = 2 Z[ c + c ]. dx This operator can be understood as the family of self-adjoint extension of the symmetric operator ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.Biblioteca Digitais de Teses e Dissertações da USPPava, Jaime AnguloCeron, Luis Andres Rosso2015-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-170403/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:40:41Zoai:teses.usp.br:tde-03062019-170403Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:40:41Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
Stability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wells
title Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
spellingShingle Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
Ceron, Luis Andres Rosso
Analytic perturbation
Diracs delta potential
Equação de Schrödinger não-linear
Estabilidade orbital
Funções elípticas de Jacobi
Jacobian elliptic functions
Non-linear Schrödinger equations
Orbital stability
perturbação analitica
Potencial delta de Dirac
Teoria de Floquet
Teoria de Floquet
title_short Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
title_full Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
title_fullStr Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
title_full_unstemmed Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
title_sort Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
author Ceron, Luis Andres Rosso
author_facet Ceron, Luis Andres Rosso
author_role author
dc.contributor.none.fl_str_mv Pava, Jaime Angulo
dc.contributor.author.fl_str_mv Ceron, Luis Andres Rosso
dc.subject.por.fl_str_mv Analytic perturbation
Diracs delta potential
Equação de Schrödinger não-linear
Estabilidade orbital
Funções elípticas de Jacobi
Jacobian elliptic functions
Non-linear Schrödinger equations
Orbital stability
perturbação analitica
Potencial delta de Dirac
Teoria de Floquet
Teoria de Floquet
topic Analytic perturbation
Diracs delta potential
Equação de Schrödinger não-linear
Estabilidade orbital
Funções elípticas de Jacobi
Jacobian elliptic functions
Non-linear Schrödinger equations
Orbital stability
perturbação analitica
Potencial delta de Dirac
Teoria de Floquet
Teoria de Floquet
description Este trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica\" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-170403/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03062019-170403/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256638427234304