Low-complexity approximations for the Kalman filter.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/ |
Resumo: | Adaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literature |
id |
USP_8dff2ec8fffc7d52cfeed498d314471b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27012022-145240 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Low-complexity approximations for the Kalman filter.Aproximações de baixa complexidade para o filtro de Kalman.Adaptive filterConvex combinationFiltros de KalmanKalman filterProcessamento de sinais adaptativosProcessos estocásticosStochastic processAdaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literatureFiltros adaptativos são normalmente empregados em situações em que o ambiente está em constante mudança, de forma que um sistema fixo não possui o desempenho adequado para executar de forma ideal a tarefa desejada. Dentre os exemplos de aplicação, podemos citar: equalização de canal, predição de dados, cancelamento de eco e assim por diante. Um recurso fundamental dos filtros adaptativos ´e sua capacidade de rastrear variações nas estatísticas de um sinal em ambientes não estacionários. No entanto, como são normalmente utilizados em aplicações de tempo real, devem ser baseados em algoritmos que requerem menos operações por dado de entrada. O algoritmo Least Mean Squares (LMS) representa um dos filtros adaptativos mais simples e fáceis de se aplicar com complexidade linear, enquanto o algoritmo Recursive Least Squares (RLS) é conhecido por sua rápida taxa de convergência, mas requer um custo computacional elevado (O(M2) para um filtro de tamanho M). Em cenários variantes no tempo, os esquemas de combinação oferecem recursos de rastreamento aprimorados em relação as componentes de cada filtro. Ao combinar filtros de diferentes famílias, nomeadamente LMS e RLS, é possível tirar vantagem das propriedades de rastreamento de cada filtro e obter uma estrutura com melhor desempenho do que se cada filtro fosse implementado individualmente. Por outro lado, apesar da alta complexidade computacional (O(M3) para modelos gerais de espaço de estados), o filtro de Kalman tem se mostrado a solução ideal para muitas tarefas de rastreamento e predição de dados, em uma ampla variedade de aplicações, desde navegação até processamento de imagens. Este filtro ´e ótimo no sentido de minimizar o erro quadrático médio dos parâmetros estimados quando todos os ruídos envolvidos são gaussianos e o vetor de parâmetros a ser estimado muda de acordo com um modelo linear. Ao contrário dos filtros adaptativos, para poder ser projetado, o filtro de Kalman requer conhecimento prévio do modelo matemático do sistema e das características estatísticas dos ruídos envolvidos. Outras versões desse filtro, como o Extended Kalman Filter (EKF) e Unscented Kalman Filter (UKF), foram desenvolvidas para lidar com modelos não lineares. Com base neste cenário, o presente trabalho busca comparar o desempenho entre os filtros adaptativos LMS e RLS, bem como sua combinação convexa com a solução ótima obtida via filtro de Kalman sob diferentes modelos autorregressivos de primeira ordem. Além disso, este trabalho também mostra que existem outros modelos para a evolução do vetor de peso ótimo para os quais é possível derivar versões rápidas (ou seja, O(M)) do filtro de Kalman, estendendo o algoritmo RLS-DCD proposto na literatura.Biblioteca Digitais de Teses e Dissertações da USPNascimento, Vitor HeloizClaser, Raffaello2021-04-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-01-31T13:54:03Zoai:teses.usp.br:tde-27012022-145240Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-31T13:54:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Low-complexity approximations for the Kalman filter. Aproximações de baixa complexidade para o filtro de Kalman. |
title |
Low-complexity approximations for the Kalman filter. |
spellingShingle |
Low-complexity approximations for the Kalman filter. Claser, Raffaello Adaptive filter Convex combination Filtros de Kalman Kalman filter Processamento de sinais adaptativos Processos estocásticos Stochastic process |
title_short |
Low-complexity approximations for the Kalman filter. |
title_full |
Low-complexity approximations for the Kalman filter. |
title_fullStr |
Low-complexity approximations for the Kalman filter. |
title_full_unstemmed |
Low-complexity approximations for the Kalman filter. |
title_sort |
Low-complexity approximations for the Kalman filter. |
author |
Claser, Raffaello |
author_facet |
Claser, Raffaello |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nascimento, Vitor Heloiz |
dc.contributor.author.fl_str_mv |
Claser, Raffaello |
dc.subject.por.fl_str_mv |
Adaptive filter Convex combination Filtros de Kalman Kalman filter Processamento de sinais adaptativos Processos estocásticos Stochastic process |
topic |
Adaptive filter Convex combination Filtros de Kalman Kalman filter Processamento de sinais adaptativos Processos estocásticos Stochastic process |
description |
Adaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literature |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257390657830912 |