Low-complexity approximations for the Kalman filter.

Detalhes bibliográficos
Autor(a) principal: Claser, Raffaello
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/
Resumo: Adaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literature
id USP_8dff2ec8fffc7d52cfeed498d314471b
oai_identifier_str oai:teses.usp.br:tde-27012022-145240
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Low-complexity approximations for the Kalman filter.Aproximações de baixa complexidade para o filtro de Kalman.Adaptive filterConvex combinationFiltros de KalmanKalman filterProcessamento de sinais adaptativosProcessos estocásticosStochastic processAdaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literatureFiltros adaptativos são normalmente empregados em situações em que o ambiente está em constante mudança, de forma que um sistema fixo não possui o desempenho adequado para executar de forma ideal a tarefa desejada. Dentre os exemplos de aplicação, podemos citar: equalização de canal, predição de dados, cancelamento de eco e assim por diante. Um recurso fundamental dos filtros adaptativos ´e sua capacidade de rastrear variações nas estatísticas de um sinal em ambientes não estacionários. No entanto, como são normalmente utilizados em aplicações de tempo real, devem ser baseados em algoritmos que requerem menos operações por dado de entrada. O algoritmo Least Mean Squares (LMS) representa um dos filtros adaptativos mais simples e fáceis de se aplicar com complexidade linear, enquanto o algoritmo Recursive Least Squares (RLS) é conhecido por sua rápida taxa de convergência, mas requer um custo computacional elevado (O(M2) para um filtro de tamanho M). Em cenários variantes no tempo, os esquemas de combinação oferecem recursos de rastreamento aprimorados em relação as componentes de cada filtro. Ao combinar filtros de diferentes famílias, nomeadamente LMS e RLS, é possível tirar vantagem das propriedades de rastreamento de cada filtro e obter uma estrutura com melhor desempenho do que se cada filtro fosse implementado individualmente. Por outro lado, apesar da alta complexidade computacional (O(M3) para modelos gerais de espaço de estados), o filtro de Kalman tem se mostrado a solução ideal para muitas tarefas de rastreamento e predição de dados, em uma ampla variedade de aplicações, desde navegação até processamento de imagens. Este filtro ´e ótimo no sentido de minimizar o erro quadrático médio dos parâmetros estimados quando todos os ruídos envolvidos são gaussianos e o vetor de parâmetros a ser estimado muda de acordo com um modelo linear. Ao contrário dos filtros adaptativos, para poder ser projetado, o filtro de Kalman requer conhecimento prévio do modelo matemático do sistema e das características estatísticas dos ruídos envolvidos. Outras versões desse filtro, como o Extended Kalman Filter (EKF) e Unscented Kalman Filter (UKF), foram desenvolvidas para lidar com modelos não lineares. Com base neste cenário, o presente trabalho busca comparar o desempenho entre os filtros adaptativos LMS e RLS, bem como sua combinação convexa com a solução ótima obtida via filtro de Kalman sob diferentes modelos autorregressivos de primeira ordem. Além disso, este trabalho também mostra que existem outros modelos para a evolução do vetor de peso ótimo para os quais é possível derivar versões rápidas (ou seja, O(M)) do filtro de Kalman, estendendo o algoritmo RLS-DCD proposto na literatura.Biblioteca Digitais de Teses e Dissertações da USPNascimento, Vitor HeloizClaser, Raffaello2021-04-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-01-31T13:54:03Zoai:teses.usp.br:tde-27012022-145240Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-31T13:54:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Low-complexity approximations for the Kalman filter.
Aproximações de baixa complexidade para o filtro de Kalman.
title Low-complexity approximations for the Kalman filter.
spellingShingle Low-complexity approximations for the Kalman filter.
Claser, Raffaello
Adaptive filter
Convex combination
Filtros de Kalman
Kalman filter
Processamento de sinais adaptativos
Processos estocásticos
Stochastic process
title_short Low-complexity approximations for the Kalman filter.
title_full Low-complexity approximations for the Kalman filter.
title_fullStr Low-complexity approximations for the Kalman filter.
title_full_unstemmed Low-complexity approximations for the Kalman filter.
title_sort Low-complexity approximations for the Kalman filter.
author Claser, Raffaello
author_facet Claser, Raffaello
author_role author
dc.contributor.none.fl_str_mv Nascimento, Vitor Heloiz
dc.contributor.author.fl_str_mv Claser, Raffaello
dc.subject.por.fl_str_mv Adaptive filter
Convex combination
Filtros de Kalman
Kalman filter
Processamento de sinais adaptativos
Processos estocásticos
Stochastic process
topic Adaptive filter
Convex combination
Filtros de Kalman
Kalman filter
Processamento de sinais adaptativos
Processos estocásticos
Stochastic process
description Adaptive filters are usually employed in situations where the environment is constantly changing, so that a fixed system would not have adequate performance to optimally perform the desired task. Examples include channel equalization, data prediction, echo cancellation and so on. A fundamental feature of adaptive filters is their ability to track variations in the signal statistics for nonstationary environments. However, as they are usually applied in real-time applications, they must be based on algorithms that require a small number of computations per input sample.The least mean squares (LMS) algorithm represents the simplest and most easily applied adaptive filter with linear complexity while the standard recursive least squares (RLS) algorithm is known for its high convergence rate, but requires a higher computational cost (O(M2) for a filter of size M). In time-varying scenarios, combination schemes oer improved tracking capabilities with respect to the component filters. When combining filters from dierent families,namely LMS and RLS, it is possible to take advantage of the tracking properties from each filter and obtain a structure with better performance than if each filter were implemented individually. On the other hand, despite the high computational complexity (O(M3) for general state-space models), the Kalman filter has long been shown to be the optimal solution to many tracking and data prediction tasks, in a wide variety of applications ranging from navigation to image processing. This filter is optimal in the sense it minimizes the mean square error of the estimated parameters when all noises involved are Gaussian and the parameter vector to be estimated changes according to a linear model. Unlike the adaptive filters, the Kalman filter requires prior knowledge of the mathematical model of the system and the statistical characteristics of noise in order to be designed. Other versions of this filter, such as extended Kalman filter and unscented Kalman filter, were develop in order to deal with nonlinear models.Based on this scenario, the present work seeks to compare the performance between the adaptive filters LMS and RLS as well as their convex combination with the optimum solution obtained via Kalman filter under dierent first order autoregressive models. In addition, this work also shows that there exist other models for the evolution of the optimum weight vector for which it is possible to derive fast (i.e., O(M)) versions of the Kalman filter, extending the RLS-DCD algorithm proposed in the literature
publishDate 2021
dc.date.none.fl_str_mv 2021-04-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/
url https://www.teses.usp.br/teses/disponiveis/3/3142/tde-27012022-145240/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257390657830912