On filter order in fir adaptive filters.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/ |
Resumo: | A practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance. |
id |
USP_068aac983a194b4c54a4aac1daab5fd9 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15022022-095446 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
On filter order in fir adaptive filters.Sobre a ordem de filtro em filtros adaptativo FIR.Adaptive filteringCombination of filterFilter lengthFilter length selectionProcessamento de sinais adaptativosProcessamento digital de sinaisUndermodelingA practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance.Um problema encontrado na prática ao projetar um filtro adaptativo FIR (do inglês, finite impulse response) é escolher um comprimento adequado para o filtro. O comprimento ideal para o filtro depende da aplicação, por isso é comum determiná-lo por métodos simples e práticos, como por tentativa e erro. Com um número pequeno de coeficientes, o filtro tem menor complexidade e pode se beneficiar de uma maior taxa de convergência, mas seu desempenho em regime é afetado por submodelamento. Por outro lado, com muitos coeficientes, asseguramos um baixo ou inexistente efeito de submodelamento, ao custo de limitar a máxima taxa de convergência estável do filtro, aumentar a complexidade computacional e também reduzir a capacidade do filtro em acompanhar variações no tempo. Neste trabalho, analisamos como o comprimento do filtro afeta o desempenho de algoritmos adaptativos, em particular dos algoritmos LMS e -NLMS. Para ambientes estacionários, analisamos o desempenho tanto em transiente quanto em regime, e propomos um projeto para o comprimento do filtro que garante alta convergência e baixo submodelamento, assumindo que a resposta impulsiva do meio segue uma envoltória de decaimento exponencial. Mostramos como um filtro com o comprimento proposto ´e particularmente interessante para ser usado em uma combinação de filtros, operando como o filtro rápido. Para ambientes não-estacionários, focamos no estudo do desempenho em regime, e mostramos com simulações que um filtro curto pode superar o desempenho de um filtro mais longo tanto em convergência quanto ao rastrear as variações temporais do sistema.Biblioteca Digitais de Teses e Dissertações da USPLopes, Cássio GuimarãesNascimento, Vitor HeloizAoyagi, Thiago Yuji2021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-02-21T14:04:02Zoai:teses.usp.br:tde-15022022-095446Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-02-21T14:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
On filter order in fir adaptive filters. Sobre a ordem de filtro em filtros adaptativo FIR. |
title |
On filter order in fir adaptive filters. |
spellingShingle |
On filter order in fir adaptive filters. Aoyagi, Thiago Yuji Adaptive filtering Combination of filter Filter length Filter length selection Processamento de sinais adaptativos Processamento digital de sinais Undermodeling |
title_short |
On filter order in fir adaptive filters. |
title_full |
On filter order in fir adaptive filters. |
title_fullStr |
On filter order in fir adaptive filters. |
title_full_unstemmed |
On filter order in fir adaptive filters. |
title_sort |
On filter order in fir adaptive filters. |
author |
Aoyagi, Thiago Yuji |
author_facet |
Aoyagi, Thiago Yuji |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lopes, Cássio Guimarães Nascimento, Vitor Heloiz |
dc.contributor.author.fl_str_mv |
Aoyagi, Thiago Yuji |
dc.subject.por.fl_str_mv |
Adaptive filtering Combination of filter Filter length Filter length selection Processamento de sinais adaptativos Processamento digital de sinais Undermodeling |
topic |
Adaptive filtering Combination of filter Filter length Filter length selection Processamento de sinais adaptativos Processamento digital de sinais Undermodeling |
description |
A practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256984438439936 |