Empacotamento de árvores em grafos completos

Detalhes bibliográficos
Autor(a) principal: Gómez Diaz, Renzo Gonzalo
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03022015-115100/
Resumo: Nesta dissertacao estudamos problemas de empacotamento de arvores em grafos, com enfase no caso de grafos completos. Denotamos por Ti uma arvore de ordem i. Dizemos que existe um empacotamento de arvores T1, . . . , Tn num grafo G se e possivel encontrar em G subgrafos H1, . . . , Hn, dois a dois disjuntos nas arestas, tais que Hi e isomorfo a Ti. Em 1976, A. Gyarfas e J. Lehel levantaram a seguinte questao, que conjecturaram ter uma resposta positiva: e possivel empaco- tar qualquer sequencia de arvores T1, . . . , Tn no Kn? Esta dissertacao tem como tema principal os estudos realizados por diversos pesquisadores na busca de uma resposta para esta pergunta, que permanece ainda em aberto. Tendo em vista a dificuldade para tratar esta questao, surge natural- mente a pergunta sobre a existencia de classes de arvores para as quais a resposta e afirmativa. Nessa linha, existem diversos resultados positivos, como por exemplo quando queremos empacotar estrelas e caminhos, ou estrelas e biestrelas. Por outro lado, em vez de restringir a classe das arvores, faz sentido restringir o tamanho da sequencia e reformular a pergunta. Por exemplo, dado s < n, e possivel empacotar qualquer sequencia de arvores T1, . . . , Ts no Kn? Em 1983, Bollobas mostrou ? que a resposta e afirmativa se s <= n / sqrt(2). Na primeira parte deste trabalho focamos nosso estudo em questoes desse tipo. Na segunda parte desta dissertacao investigamos algumas conjecturas que foram motivadas pela pergunta levantada por Gyarfas & Lehel. Por exemplo, Hobbs, Bourgeois e Kasiraj formularam a seguinte questao: para n par, e possivel empacotar qualquer sequencia de arvores T1, . . . , Tn no grafo bipartido Kn/2,n-1? Para essa pergunta apresentamos alguns resultados conhecidos analogos aos obtidos para a conjectura de Gyarfas & Lehel. Mais recentemente, Gerbner, Keszegh e Palmer estudaram a seguinte generalizacao da conjectura original: e possivel empacotar qualquer sequencia de arvores T1, . . . , Tk num grafo k-cromatico? Neste trabalho estudamos essas e outras questoes relacionadas e apresentamos os principais resultados que encontramos na literatura.
id USP_9513ad31c0e208ac424e7b85d0683e7e
oai_identifier_str oai:teses.usp.br:tde-03022015-115100
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Empacotamento de árvores em grafos completosPacking trees into complete graphsbiestrelasbistarscomplete graphdecomposição em árvoresdecomposition into treesempacotamento de árvoresestrelasgrafo completografo k-cromáticok-chromatic graphpacking of treesstarsNesta dissertacao estudamos problemas de empacotamento de arvores em grafos, com enfase no caso de grafos completos. Denotamos por Ti uma arvore de ordem i. Dizemos que existe um empacotamento de arvores T1, . . . , Tn num grafo G se e possivel encontrar em G subgrafos H1, . . . , Hn, dois a dois disjuntos nas arestas, tais que Hi e isomorfo a Ti. Em 1976, A. Gyarfas e J. Lehel levantaram a seguinte questao, que conjecturaram ter uma resposta positiva: e possivel empaco- tar qualquer sequencia de arvores T1, . . . , Tn no Kn? Esta dissertacao tem como tema principal os estudos realizados por diversos pesquisadores na busca de uma resposta para esta pergunta, que permanece ainda em aberto. Tendo em vista a dificuldade para tratar esta questao, surge natural- mente a pergunta sobre a existencia de classes de arvores para as quais a resposta e afirmativa. Nessa linha, existem diversos resultados positivos, como por exemplo quando queremos empacotar estrelas e caminhos, ou estrelas e biestrelas. Por outro lado, em vez de restringir a classe das arvores, faz sentido restringir o tamanho da sequencia e reformular a pergunta. Por exemplo, dado s < n, e possivel empacotar qualquer sequencia de arvores T1, . . . , Ts no Kn? Em 1983, Bollobas mostrou ? que a resposta e afirmativa se s <= n / sqrt(2). Na primeira parte deste trabalho focamos nosso estudo em questoes desse tipo. Na segunda parte desta dissertacao investigamos algumas conjecturas que foram motivadas pela pergunta levantada por Gyarfas & Lehel. Por exemplo, Hobbs, Bourgeois e Kasiraj formularam a seguinte questao: para n par, e possivel empacotar qualquer sequencia de arvores T1, . . . , Tn no grafo bipartido Kn/2,n-1? Para essa pergunta apresentamos alguns resultados conhecidos analogos aos obtidos para a conjectura de Gyarfas & Lehel. Mais recentemente, Gerbner, Keszegh e Palmer estudaram a seguinte generalizacao da conjectura original: e possivel empacotar qualquer sequencia de arvores T1, . . . , Tk num grafo k-cromatico? Neste trabalho estudamos essas e outras questoes relacionadas e apresentamos os principais resultados que encontramos na literatura.In this dissertation we address the problem of packing trees into graphs, with focus on complete graphs. We denote by Ti a tree of order i. We say that there exists a packing of trees T1,...,Tn in a graph G if its possible to find in G pairwise edge-disjoint subgraphs H1, . . . , Hn such that Hi is isomorphic to Ti. In 1976, A. Gyárfás and J. Lehel raised the following question, that they conjectured to have an affirmative answer: is it possible to pack any sequence of trees T1, . . . , Tn into the complete graph Kn? In this dissertation, we study a number of contributions made by various researchers in the search for an answer to this question, that is still open. In view of the difficulty of this question, it is natural to look for the existence of classes of trees for which the answer is affirmative. In this direction, some positive results have been found, as for example, when the sequences of trees are restricted to stars and paths, or stars and bistars. On the other hand, instead of restricting the classes of trees, it makes sense to restrict the length of the sequence and reformulate the question. For example, given s < n, is it possible to pack any sequence of trees T1, . . . , Ts into Kn? In 1983, Bollobás showed that the answer is affirmative if s <= n/sqrt(2). In the first part of this work, we focus on such kind of questions. In the second part of this dissertation we investigate some other conjectures that were motivated by the conjecture of Gyárfás & Lehel. For example, Hobbs, Bourgeois and Kasiraj formulated the following question: For n even, is it possible to pack any sequence of trees T1, . . . , Tn into the complete bipartite graph Kn/2,n-1? For this question, we present some known results analogous to those obtained for the conjecture of Gyárfás & Lehel. More recently, Gerbner, Keszegh and Palmer studied the following generalization of the of former conjecture: is it possible to pack any sequence of trees T1,...,Tk in a k-chromatic graph? In this dissertation, we study this and other related questions and present the main results we found in the literature.Biblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoGómez Diaz, Renzo Gonzalo2014-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-03022015-115100/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-03022015-115100Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Empacotamento de árvores em grafos completos
Packing trees into complete graphs
title Empacotamento de árvores em grafos completos
spellingShingle Empacotamento de árvores em grafos completos
Gómez Diaz, Renzo Gonzalo
biestrelas
bistars
complete graph
decomposição em árvores
decomposition into trees
empacotamento de árvores
estrelas
grafo completo
grafo k-cromático
k-chromatic graph
packing of trees
stars
title_short Empacotamento de árvores em grafos completos
title_full Empacotamento de árvores em grafos completos
title_fullStr Empacotamento de árvores em grafos completos
title_full_unstemmed Empacotamento de árvores em grafos completos
title_sort Empacotamento de árvores em grafos completos
author Gómez Diaz, Renzo Gonzalo
author_facet Gómez Diaz, Renzo Gonzalo
author_role author
dc.contributor.none.fl_str_mv Wakabayashi, Yoshiko
dc.contributor.author.fl_str_mv Gómez Diaz, Renzo Gonzalo
dc.subject.por.fl_str_mv biestrelas
bistars
complete graph
decomposição em árvores
decomposition into trees
empacotamento de árvores
estrelas
grafo completo
grafo k-cromático
k-chromatic graph
packing of trees
stars
topic biestrelas
bistars
complete graph
decomposição em árvores
decomposition into trees
empacotamento de árvores
estrelas
grafo completo
grafo k-cromático
k-chromatic graph
packing of trees
stars
description Nesta dissertacao estudamos problemas de empacotamento de arvores em grafos, com enfase no caso de grafos completos. Denotamos por Ti uma arvore de ordem i. Dizemos que existe um empacotamento de arvores T1, . . . , Tn num grafo G se e possivel encontrar em G subgrafos H1, . . . , Hn, dois a dois disjuntos nas arestas, tais que Hi e isomorfo a Ti. Em 1976, A. Gyarfas e J. Lehel levantaram a seguinte questao, que conjecturaram ter uma resposta positiva: e possivel empaco- tar qualquer sequencia de arvores T1, . . . , Tn no Kn? Esta dissertacao tem como tema principal os estudos realizados por diversos pesquisadores na busca de uma resposta para esta pergunta, que permanece ainda em aberto. Tendo em vista a dificuldade para tratar esta questao, surge natural- mente a pergunta sobre a existencia de classes de arvores para as quais a resposta e afirmativa. Nessa linha, existem diversos resultados positivos, como por exemplo quando queremos empacotar estrelas e caminhos, ou estrelas e biestrelas. Por outro lado, em vez de restringir a classe das arvores, faz sentido restringir o tamanho da sequencia e reformular a pergunta. Por exemplo, dado s < n, e possivel empacotar qualquer sequencia de arvores T1, . . . , Ts no Kn? Em 1983, Bollobas mostrou ? que a resposta e afirmativa se s <= n / sqrt(2). Na primeira parte deste trabalho focamos nosso estudo em questoes desse tipo. Na segunda parte desta dissertacao investigamos algumas conjecturas que foram motivadas pela pergunta levantada por Gyarfas & Lehel. Por exemplo, Hobbs, Bourgeois e Kasiraj formularam a seguinte questao: para n par, e possivel empacotar qualquer sequencia de arvores T1, . . . , Tn no grafo bipartido Kn/2,n-1? Para essa pergunta apresentamos alguns resultados conhecidos analogos aos obtidos para a conjectura de Gyarfas & Lehel. Mais recentemente, Gerbner, Keszegh e Palmer estudaram a seguinte generalizacao da conjectura original: e possivel empacotar qualquer sequencia de arvores T1, . . . , Tk num grafo k-cromatico? Neste trabalho estudamos essas e outras questoes relacionadas e apresentamos os principais resultados que encontramos na literatura.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03022015-115100/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03022015-115100/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256628239269888