Deep reinforcement learning for multi-domain task-oriented dialogue systems.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31032023-082212/ |
Resumo: | Dialogue system (DS) is an old idea dating back to 1966, when the rst such system was created. DS can be classied in three categories: question & answering, task-oriented and socialbot. Task-oriented dialogue systems are a very relevant eld due to the diversity of possible applications it can achieve. For example, it can solve tasks like buying a movie ticket, booking a restaurant and providing customer service. They have received increasing attention in recent years, and one reason for this is the advancement in natural language processing. Although the literature presents several studies focusing on DS, there are still many issues to be accomplished. Most of them are related to dialogue management, the central component of DS. Reinforcement learning (RL) is one approach that has achieved great success recently. However, things become more complex when DS is extended to multi-domain settings, i.e. when DS needs to complete multiple tasks in dierent domains for the user. Some problems such as policy adaptation and transfer learning arise in this new scenario. The purpose of this research is to improve recent techniques using RL on the dialogue management. We present an ecient learning by balancing exploration and exploitation, and enhancing the usage of expert knowledge to guide the agent. We propose a method to handle noise and error in the input of the dialogue management and we also provide a basic comparison between RL and supervised learning in both toy and real datasets. Finally, we present a new proposal to deal with multi-domain settings: the use of the divide-and-conquer technique and transfer learning for dierent domains. |
id |
USP_9943840d6d6f374b0990b8cbe92e5e00 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-31032023-082212 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Deep reinforcement learning for multi-domain task-oriented dialogue systems.Aprendizado por reforço profundo para sistemas de diálogo orientados a objetivo de múltiplos domínios.Aprendizado computacionalAprendizado por reforçoChatbotChatbotsDialogue managementDialogue systemMultiple domainsReinforcement learningTransfer learningDialogue system (DS) is an old idea dating back to 1966, when the rst such system was created. DS can be classied in three categories: question & answering, task-oriented and socialbot. Task-oriented dialogue systems are a very relevant eld due to the diversity of possible applications it can achieve. For example, it can solve tasks like buying a movie ticket, booking a restaurant and providing customer service. They have received increasing attention in recent years, and one reason for this is the advancement in natural language processing. Although the literature presents several studies focusing on DS, there are still many issues to be accomplished. Most of them are related to dialogue management, the central component of DS. Reinforcement learning (RL) is one approach that has achieved great success recently. However, things become more complex when DS is extended to multi-domain settings, i.e. when DS needs to complete multiple tasks in dierent domains for the user. Some problems such as policy adaptation and transfer learning arise in this new scenario. The purpose of this research is to improve recent techniques using RL on the dialogue management. We present an ecient learning by balancing exploration and exploitation, and enhancing the usage of expert knowledge to guide the agent. We propose a method to handle noise and error in the input of the dialogue management and we also provide a basic comparison between RL and supervised learning in both toy and real datasets. Finally, we present a new proposal to deal with multi-domain settings: the use of the divide-and-conquer technique and transfer learning for dierent domains.O sistema de diálogo (DS) é uma ideia antiga que remonta a 1966, quando o primeiro sistema desse tipo foi criado. O DS pode ser classificado em três categorias: perguntas & respostas, orientado à objetivo e socialbot. Os sistemas de diálogo orientados à objetivo são um campo muito relevante devido à diversidade de aplicações possíveis que podem alcançar. Por exemplo, ele pode resolver tarefas como comprar um ingresso de cinema, reservar um restaurante e fornecer atendimento ao cliente. Eles têm recebido cada vez mais atenção no processamento de linguagem natural. Embora a literatura apresente diversos estudos com foco na SD, ainda há muitas questões a serem cumpridas. A maioria deles está relacionada à gestão do diálogo, componente central do DS. A aprendizagem por reforço (RL) é uma abordagem que alcançou grande sucesso recentemente. No entanto, as coisas se tornam mais complexas quando o DS é estendido para configurações de vários domínios, ou seja, quando o DS precisa concluir várias tarefas em diferentes domínios para o usuário. Alguns problemas como adaptação de políticas e transferência de aprendizado surgem nesse novo cenário. O objetivo desta pesquisa é aprimorar técnicas recentes de uso de RL na gestão do diálogo. Apresentamos um aprendizado eficiente equilibrando exploração e explotação, e potencializando o uso do conhecimento especializado para orientar o agente. Propomos um método para lidar com ruído e erro na entrada do gerenciamento de diálogo e também fornecemos uma comparação básica entre RL e aprendizado supervisionado em conjuntos de dados reais e de brinquedo. Porém, apresentamos uma nova proposta para lidar com configurações multidomínio: o uso da técnica de dividir e conquistar e transferir aprendizado para diferentes domínios.Biblioteca Digitais de Teses e Dissertações da USPCosta, Anna Helena RealiNishimoto, Bruno Eidi2022-11-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-31032023-082212/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:08Zoai:teses.usp.br:tde-31032023-082212Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. Aprendizado por reforço profundo para sistemas de diálogo orientados a objetivo de múltiplos domínios. |
title |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
spellingShingle |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. Nishimoto, Bruno Eidi Aprendizado computacional Aprendizado por reforço Chatbot Chatbots Dialogue management Dialogue system Multiple domains Reinforcement learning Transfer learning |
title_short |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
title_full |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
title_fullStr |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
title_full_unstemmed |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
title_sort |
Deep reinforcement learning for multi-domain task-oriented dialogue systems. |
author |
Nishimoto, Bruno Eidi |
author_facet |
Nishimoto, Bruno Eidi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Anna Helena Reali |
dc.contributor.author.fl_str_mv |
Nishimoto, Bruno Eidi |
dc.subject.por.fl_str_mv |
Aprendizado computacional Aprendizado por reforço Chatbot Chatbots Dialogue management Dialogue system Multiple domains Reinforcement learning Transfer learning |
topic |
Aprendizado computacional Aprendizado por reforço Chatbot Chatbots Dialogue management Dialogue system Multiple domains Reinforcement learning Transfer learning |
description |
Dialogue system (DS) is an old idea dating back to 1966, when the rst such system was created. DS can be classied in three categories: question & answering, task-oriented and socialbot. Task-oriented dialogue systems are a very relevant eld due to the diversity of possible applications it can achieve. For example, it can solve tasks like buying a movie ticket, booking a restaurant and providing customer service. They have received increasing attention in recent years, and one reason for this is the advancement in natural language processing. Although the literature presents several studies focusing on DS, there are still many issues to be accomplished. Most of them are related to dialogue management, the central component of DS. Reinforcement learning (RL) is one approach that has achieved great success recently. However, things become more complex when DS is extended to multi-domain settings, i.e. when DS needs to complete multiple tasks in dierent domains for the user. Some problems such as policy adaptation and transfer learning arise in this new scenario. The purpose of this research is to improve recent techniques using RL on the dialogue management. We present an ecient learning by balancing exploration and exploitation, and enhancing the usage of expert knowledge to guide the agent. We propose a method to handle noise and error in the input of the dialogue management and we also provide a basic comparison between RL and supervised learning in both toy and real datasets. Finally, we present a new proposal to deal with multi-domain settings: the use of the divide-and-conquer technique and transfer learning for dierent domains. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31032023-082212/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31032023-082212/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256545401765888 |