Identidades polinomiais da álgebra de octônios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-114621/ |
Resumo: | Neste trabalho encontramos bases para as identidades T Z 32 e T Z 22 gradu- adas dos octônios. Utilizando a base obtida no T Z 22 , re-obtivemos uma base para as identidades Z 2 -graduadas das matrizes dois por dois. Também obti- vemos as identidades simultaneamente fracas e antissimétricas ou skew dos octônios na categorias de álgebras alternativas. Também obtivemos as identi- dades antissimétricas da álgebra de Malcev simples de dimensão sete, sl(O). Para ambos os casos estudados de identidades não graduadas dos octônios, mostramos positivamente a conjectura de Shestakov-Zhukavets: O T -ideal de identidades dos octônios coincide com o da álgebra alternativa quadrá- tica. |
id |
USP_9a16252caa3f6902300f6ece7447ba84 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25092019-114621 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Identidades polinomiais da álgebra de octôniosPolynomial identities of the octonion algebraÁlgebra alternativaÁlgebra de malcevAlternative algebraIdentidade polinomialMalcev algebraPolynomial identitySuperalgebraSuperálgebraNeste trabalho encontramos bases para as identidades T Z 32 e T Z 22 gradu- adas dos octônios. Utilizando a base obtida no T Z 22 , re-obtivemos uma base para as identidades Z 2 -graduadas das matrizes dois por dois. Também obti- vemos as identidades simultaneamente fracas e antissimétricas ou skew dos octônios na categorias de álgebras alternativas. Também obtivemos as identi- dades antissimétricas da álgebra de Malcev simples de dimensão sete, sl(O). Para ambos os casos estudados de identidades não graduadas dos octônios, mostramos positivamente a conjectura de Shestakov-Zhukavets: O T -ideal de identidades dos octônios coincide com o da álgebra alternativa quadrá- tica.In this work we find bases for the T Z 32 and T Z 22 graded identities of the octonion algebra. Using the base obtained in the T Z 22 case, we re-obtain a basis for the Z 2 -graded identities of two by two matrices. We also obtained the simultaneously skew and weak identities of the octonions in the category of alternative algebras. In addition we find a basis of identities for the simple Malcev algebra of dimension seven, sl(O). For both skew cases of identities studied we positively show the Shestakov-Zhukavets conjecture: The T -ideal of identities of the octonions coincides with that of the quadratic alternative algebra.Biblioteca Digitais de Teses e Dissertações da USPChestakov, IvanMeirelles, Fernando Henry2014-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-114621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-08T23:43:17Zoai:teses.usp.br:tde-25092019-114621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:43:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Identidades polinomiais da álgebra de octônios Polynomial identities of the octonion algebra |
title |
Identidades polinomiais da álgebra de octônios |
spellingShingle |
Identidades polinomiais da álgebra de octônios Meirelles, Fernando Henry Álgebra alternativa Álgebra de malcev Alternative algebra Identidade polinomial Malcev algebra Polynomial identity Superalgebra Superálgebra |
title_short |
Identidades polinomiais da álgebra de octônios |
title_full |
Identidades polinomiais da álgebra de octônios |
title_fullStr |
Identidades polinomiais da álgebra de octônios |
title_full_unstemmed |
Identidades polinomiais da álgebra de octônios |
title_sort |
Identidades polinomiais da álgebra de octônios |
author |
Meirelles, Fernando Henry |
author_facet |
Meirelles, Fernando Henry |
author_role |
author |
dc.contributor.none.fl_str_mv |
Chestakov, Ivan |
dc.contributor.author.fl_str_mv |
Meirelles, Fernando Henry |
dc.subject.por.fl_str_mv |
Álgebra alternativa Álgebra de malcev Alternative algebra Identidade polinomial Malcev algebra Polynomial identity Superalgebra Superálgebra |
topic |
Álgebra alternativa Álgebra de malcev Alternative algebra Identidade polinomial Malcev algebra Polynomial identity Superalgebra Superálgebra |
description |
Neste trabalho encontramos bases para as identidades T Z 32 e T Z 22 gradu- adas dos octônios. Utilizando a base obtida no T Z 22 , re-obtivemos uma base para as identidades Z 2 -graduadas das matrizes dois por dois. Também obti- vemos as identidades simultaneamente fracas e antissimétricas ou skew dos octônios na categorias de álgebras alternativas. Também obtivemos as identi- dades antissimétricas da álgebra de Malcev simples de dimensão sete, sl(O). Para ambos os casos estudados de identidades não graduadas dos octônios, mostramos positivamente a conjectura de Shestakov-Zhukavets: O T -ideal de identidades dos octônios coincide com o da álgebra alternativa quadrá- tica. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-114621/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-114621/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257340729884672 |