Machine learning applied to ship maneuvering simulations.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-142324/ |
Resumo: | With the increase of computational power, ship maneuvering simulations have become an important tool to improve the safety of the operations carried at the sea. In this context, one of the most important categories of simulations made by the Numerical Offshore Tank (TPN-USP) is the Real-Time simulations, carried out in a Virtual Reality environment at the same time scale as a real maneuver. These simulations are used to evaluate maritime maneuvers\' risks and viability, but since they take a long time, only a few can be made per day. This work focuses on applying machine learning to create a tool for the TPN-USP maritime simulator that will be used to choose environmental conditions of wind, currents, local sea waves and swell for these simulations. |
id |
USP_9a40b296287fb8f11000a8512315b158 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18052021-142324 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Machine learning applied to ship maneuvering simulations.Aprendizado de máquina aplicado a simulações de manobra de navios.Aprendizado computacionalCluster analysisHidroviasMachine learningMaritime simulationOperação navalWith the increase of computational power, ship maneuvering simulations have become an important tool to improve the safety of the operations carried at the sea. In this context, one of the most important categories of simulations made by the Numerical Offshore Tank (TPN-USP) is the Real-Time simulations, carried out in a Virtual Reality environment at the same time scale as a real maneuver. These simulations are used to evaluate maritime maneuvers\' risks and viability, but since they take a long time, only a few can be made per day. This work focuses on applying machine learning to create a tool for the TPN-USP maritime simulator that will be used to choose environmental conditions of wind, currents, local sea waves and swell for these simulations.Com a expansão do poder computacional, simulações de manobras marítimas se tornaram uma importante ferramenta para se aumentar a segurança das operações realizadas no mar. Neste contexto, uma das categorias mais importantes de simulações realizadas pelo Tanque de Provas Numérico da USP (TPN-USP) são as em tempo real, ou seja na mesma escala de tempo de uma manobra real em um ambiente de realidade virtual. Tais simulações são utilizadas para se avaliar os riscos e a viabilidade de manobras marítimas, porém por elas serem demoradas poucos casos podem ser analisados por dia. Este trabalho visa a aplicação de aprendizado de máquina para criar uma ferramenta para o simulador marítimo do TPN-USP que irá ser utilizada para escolher quais condições ambientais de vento, corrente, ondas de mar local e swell serão utilizadas para essas simulações.Biblioteca Digitais de Teses e Dissertações da USPTannuri, Eduardo AounMoreno, Felipe Marino2020-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-142324/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-18T20:45:02Zoai:teses.usp.br:tde-18052021-142324Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-18T20:45:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Machine learning applied to ship maneuvering simulations. Aprendizado de máquina aplicado a simulações de manobra de navios. |
title |
Machine learning applied to ship maneuvering simulations. |
spellingShingle |
Machine learning applied to ship maneuvering simulations. Moreno, Felipe Marino Aprendizado computacional Cluster analysis Hidrovias Machine learning Maritime simulation Operação naval |
title_short |
Machine learning applied to ship maneuvering simulations. |
title_full |
Machine learning applied to ship maneuvering simulations. |
title_fullStr |
Machine learning applied to ship maneuvering simulations. |
title_full_unstemmed |
Machine learning applied to ship maneuvering simulations. |
title_sort |
Machine learning applied to ship maneuvering simulations. |
author |
Moreno, Felipe Marino |
author_facet |
Moreno, Felipe Marino |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tannuri, Eduardo Aoun |
dc.contributor.author.fl_str_mv |
Moreno, Felipe Marino |
dc.subject.por.fl_str_mv |
Aprendizado computacional Cluster analysis Hidrovias Machine learning Maritime simulation Operação naval |
topic |
Aprendizado computacional Cluster analysis Hidrovias Machine learning Maritime simulation Operação naval |
description |
With the increase of computational power, ship maneuvering simulations have become an important tool to improve the safety of the operations carried at the sea. In this context, one of the most important categories of simulations made by the Numerical Offshore Tank (TPN-USP) is the Real-Time simulations, carried out in a Virtual Reality environment at the same time scale as a real maneuver. These simulations are used to evaluate maritime maneuvers\' risks and viability, but since they take a long time, only a few can be made per day. This work focuses on applying machine learning to create a tool for the TPN-USP maritime simulator that will be used to choose environmental conditions of wind, currents, local sea waves and swell for these simulations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-142324/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-142324/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257099744051200 |