Superdispersão em dados binomiais hierárquicos

Detalhes bibliográficos
Autor(a) principal: Nati, Lilian
Data de Publicação: 2008
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-19062008-132744/
Resumo: Para analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis.
id USP_9b43b8448366770d218502ef549a009a
oai_identifier_str oai:teses.usp.br:tde-19062008-132744
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Superdispersão em dados binomiais hierárquicosOverdispersion in hierarchical binomial databinomial datadados binomiaisgeneralized linear mixed modelshierarchical modelsmodelos hierárquicosmodelos lineares generalizados mistosmodelos multiníveismultilevel modelsoverdispersionsuperdispersãoPara analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis.A common alternative when analyzing binary data originated from a two-level hierarchical structure (for instance, student and school) is to assume a binomial distribution for the experimental units of the first level (student) conditionally to a normal random effect for the second level units (school). In this work, we propose the inclusion of a second normal random effect in the first level to contemplate a possible extra-binomial variability due to the dependence among the Bernoulli trials in the same individual. We obtain the maximum likelihood estimation process for this hierarchical model starting from the marginal likelihood of the data, after a double application of the adaptive Gauss-Hermite quadrature as an approximation of the integrals of the random effects. We conduct a simulation study to compare the inferential properties of the advocated model with the generalized linear (binomial) model, a quasi-likelihood model and the usual two-level hierarchical generalized linear model.Biblioteca Digitais de Teses e Dissertações da USPAndrade, Dalton Francisco deNati, Lilian2008-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-19062008-132744/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T21:43:02Zoai:teses.usp.br:tde-19062008-132744Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T21:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Superdispersão em dados binomiais hierárquicos
Overdispersion in hierarchical binomial data
title Superdispersão em dados binomiais hierárquicos
spellingShingle Superdispersão em dados binomiais hierárquicos
Nati, Lilian
binomial data
dados binomiais
generalized linear mixed models
hierarchical models
modelos hierárquicos
modelos lineares generalizados mistos
modelos multiníveis
multilevel models
overdispersion
superdispersão
title_short Superdispersão em dados binomiais hierárquicos
title_full Superdispersão em dados binomiais hierárquicos
title_fullStr Superdispersão em dados binomiais hierárquicos
title_full_unstemmed Superdispersão em dados binomiais hierárquicos
title_sort Superdispersão em dados binomiais hierárquicos
author Nati, Lilian
author_facet Nati, Lilian
author_role author
dc.contributor.none.fl_str_mv Andrade, Dalton Francisco de
dc.contributor.author.fl_str_mv Nati, Lilian
dc.subject.por.fl_str_mv binomial data
dados binomiais
generalized linear mixed models
hierarchical models
modelos hierárquicos
modelos lineares generalizados mistos
modelos multiníveis
multilevel models
overdispersion
superdispersão
topic binomial data
dados binomiais
generalized linear mixed models
hierarchical models
modelos hierárquicos
modelos lineares generalizados mistos
modelos multiníveis
multilevel models
overdispersion
superdispersão
description Para analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis.
publishDate 2008
dc.date.none.fl_str_mv 2008-03-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-19062008-132744/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-19062008-132744/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257170451628032