Convergência na teoria de grafos aleatórios
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-023709/ |
Resumo: | O objeto de estudo desta dissertação é o modelo 'G IND.n,p(n)' de grafos aleatórios. Estudamos a probabilidade de 'G IND.n,p(n)' satisfazer propriedades que podem ser expressas numa teoria de primeira ordem de grafos. O estudo desta probabilidadeé feito em termos assintóticos, ou seja, quando o número de vértices n de 'G IND.n,p(n)' tende ao infinito. Particularmente, estamos interessados no caso em que a probabilidade acima mencionada converge para 0 ou para 1 (lei zero-um). Como ferramenta no estudo dessa probabilidade, utilizamos o Jogo de Ehrenfeucht. Apresentamos dois importantes resultados na área: o de Glebskii-Fagin e de Shelah-Spencer |
id |
USP_9bcb6bd82cdcad371eb10fd29ef91ebb |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-023709 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Convergência na teoria de grafos aleatóriosnot availableTeoria Dos GrafosO objeto de estudo desta dissertação é o modelo 'G IND.n,p(n)' de grafos aleatórios. Estudamos a probabilidade de 'G IND.n,p(n)' satisfazer propriedades que podem ser expressas numa teoria de primeira ordem de grafos. O estudo desta probabilidadeé feito em termos assintóticos, ou seja, quando o número de vértices n de 'G IND.n,p(n)' tende ao infinito. Particularmente, estamos interessados no caso em que a probabilidade acima mencionada converge para 0 ou para 1 (lei zero-um). Como ferramenta no estudo dessa probabilidade, utilizamos o Jogo de Ehrenfeucht. Apresentamos dois importantes resultados na área: o de Glebskii-Fagin e de Shelah-SpencerThe object of study in this dissertation is the model 'G IND.n,p(n)' for random graphs. We study the probability of 'G IND.n,p(n)' satisfying graph properties which can be expressed in a first-order theory. The study of this probability is donein asymptotic terms, that is, when the number of vertices n of 'G IND.n,p(n)' tends to infinity. In particular, we are interested in the case that this probability converges to 0 or 1 (zero-one laws). As a tool in the study of this probability,we use the Ehrenfeucht Game and Theorem. We present two major results in the field: the Glebskii-Fagin Theorem as well as the Shelah-Spencer TheoremBiblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuScalzitti, Alexandre1999-10-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-023709/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:02:32Zoai:teses.usp.br:tde-20210729-023709Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:02:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Convergência na teoria de grafos aleatórios not available |
title |
Convergência na teoria de grafos aleatórios |
spellingShingle |
Convergência na teoria de grafos aleatórios Scalzitti, Alexandre Teoria Dos Grafos |
title_short |
Convergência na teoria de grafos aleatórios |
title_full |
Convergência na teoria de grafos aleatórios |
title_fullStr |
Convergência na teoria de grafos aleatórios |
title_full_unstemmed |
Convergência na teoria de grafos aleatórios |
title_sort |
Convergência na teoria de grafos aleatórios |
author |
Scalzitti, Alexandre |
author_facet |
Scalzitti, Alexandre |
author_role |
author |
dc.contributor.none.fl_str_mv |
Kohayakawa, Yoshiharu |
dc.contributor.author.fl_str_mv |
Scalzitti, Alexandre |
dc.subject.por.fl_str_mv |
Teoria Dos Grafos |
topic |
Teoria Dos Grafos |
description |
O objeto de estudo desta dissertação é o modelo 'G IND.n,p(n)' de grafos aleatórios. Estudamos a probabilidade de 'G IND.n,p(n)' satisfazer propriedades que podem ser expressas numa teoria de primeira ordem de grafos. O estudo desta probabilidadeé feito em termos assintóticos, ou seja, quando o número de vértices n de 'G IND.n,p(n)' tende ao infinito. Particularmente, estamos interessados no caso em que a probabilidade acima mencionada converge para 0 ou para 1 (lei zero-um). Como ferramenta no estudo dessa probabilidade, utilizamos o Jogo de Ehrenfeucht. Apresentamos dois importantes resultados na área: o de Glebskii-Fagin e de Shelah-Spencer |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-10-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-023709/ |
url |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-023709/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208195121152 |